Vertex-Rounding a Three-Dimensional Polyhedral Subdivision

Abstract. Let P be a polyhedral subdivision in R3 with a total of n faces. We show that there is an embedding σ of the vertices, edges, and facets of P into a subdivision Q , where every vertex coordinate of Q is an integral multiple of $2^{- \lceil \log_2 n + 2 \rceil}$ . For each face f of P , the Hausdorff distance in the L∈fty metric between f and σ(f) is at most 3/2 . The embedding σ preserves or collapses vertical order on faces of P . The subdivision Q has O(n4) vertices in the worst case, and can be computed in the same time.

[1]  F. Frances Yao,et al.  Finite-resolution computational geometry , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[2]  Steven Fortune,et al.  Robustness Issues in Geometric Algorithms , 1996, WACG.

[3]  John D. Hobby,et al.  Practical segment intersection with finite precision output , 1999, Comput. Geom..

[4]  Christoph M. Hoffmann,et al.  The problems of accuracy and robustness in geometric computation , 1989, Computer.

[5]  Franklin P. Antonio Faster Line Segment Intersection , 1992, Graphics Gems III.

[6]  V. Milenkovic Rounding Face Lattices in D Dimensions , 1990 .

[7]  Christopher J. Van Wyk,et al.  Static analysis yields efficient exact integer arithmetic for computational geometry , 1996, TOGS.

[8]  Victor Y. Pan,et al.  Computing exact geometric predicates using modular arithmetic with single precision , 1997, SCG '97.

[9]  Leonidas J. Guibas,et al.  Rounding arrangements dynamically , 1995, SCG '95.

[10]  Steven Fortune,et al.  Polyhedral modelling with multiprecision integer arithmetic , 1997, Comput. Aided Des..

[11]  Leonidas J. Guibas,et al.  Snap rounding line segments efficiently in two and three dimensions , 1997, SCG '97.

[12]  Jonathan Richard Shewchuk,et al.  Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates , 1997, Discret. Comput. Geom..

[13]  Victor J. Milenkovic,et al.  Verifiable Implementations of Geometric Algorithms Using Finite Precision Arithmetic , 1989, Artif. Intell..

[14]  Lee R. Nackman,et al.  Efficient Delaunay triangulation using rational arithmetic , 1991, TOGS.

[15]  Kenneth L. Clarkson,et al.  Safe and effective determinant evaluation , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[16]  Victor J. Milenkovic Shortest Path Geometric Rounding , 2000, Algorithmica.

[17]  Lee R. Nackman,et al.  Finding compact coordinate representations for polygons and polyhedra , 1990 .

[18]  Philippe Jaillon Proposition d'une arithmétique rationnelle paresseuse et d'un outil d'aide à la saisie d'objets en synthèse d'images. (Proposal for a Lazy Rational Arithmetic and a Tool for the Simplification of the input of Objects in Computer Graphics) , 1993 .

[19]  Mariette Yvinec,et al.  Efficient Exact Evaluation of Signs of Determinants , 1997, Symposium on Computational Geometry.