Accelerating an Adaptive Mesh Refinement Code for Depth‐Averaged Flows Using GPUs

[1]  Randall J. LeVeque,et al.  The Geomorphic Impact of Outburst Floods: Integrating Observations and Numerical Simulations of the 2000 Yigong Flood, Eastern Himalaya , 2019, Journal of Geophysical Research: Earth Surface.

[2]  António M. Baptista,et al.  An Efficient and Robust Tsunami Model on Unstructured Grids. Part I: Inundation Benchmarks , 2008 .

[3]  Randall J. LeVeque,et al.  Tsunami modelling with adaptively refined finite volume methods* , 2011, Acta Numerica.

[4]  Randall J. LeVeque,et al.  GeoClaw Model Tsunamis Compared to Tide Gauge Results Final Report , 2018 .

[5]  Randall J. LeVeque,et al.  Comparison of Earthquake Source Models for the 2011 Tohoku Event Using Tsunami Simulations and Near‐Field Observations , 2013 .

[6]  Scott R. Kohn,et al.  Managing application complexity in the SAMRAI object‐oriented framework , 2002, Concurr. Comput. Pract. Exp..

[7]  Luke S. Smith,et al.  Towards a generalised GPU/CPU shallow-flow modelling tool , 2013 .

[8]  Mustafa S. Altinakar,et al.  Efficient shallow water simulations on GPUs: Implementation, visualization, verification, and validation , 2012 .

[9]  Michael Bader,et al.  Parallel Memory-Efficient Adaptive Mesh Refinement on Structured Triangular Meshes with Billions of Grid Cells , 2017, ACM Trans. Math. Softw..

[10]  Stefan Dech,et al.  "Last-Mile" preparation for a potential disaster - Interdisciplinary approach towards tsunami early warning and an evacuation information system for the coastal city of Padang, Indonesia , 2009 .

[11]  Stéphane Popinet,et al.  Adaptive modelling of long-distance wave propagation and fine-scale flooding during the Tohoku tsunami , 2012 .

[12]  Marc O. Eberhard,et al.  Tsunami-Like Wave Loading of Individual Bridge Components , 2018 .

[13]  Randall J. LeVeque,et al.  Clawpack: building an open source ecosystem for solving hyperbolic PDEs , 2016, PeerJ Comput. Sci..

[14]  Stephan T. Grilli,et al.  Performance Benchmarking Tsunami Models for NTHMP’s Inundation Mapping Activities , 2015, Pure and Applied Geophysics.

[15]  Carsten Burstedde,et al.  p4est: Scalable Algorithms for Parallel Adaptive Mesh Refinement on Forests of Octrees , 2011, SIAM J. Sci. Comput..

[16]  David L. George,et al.  Augmented Riemann solvers for the shallow water equations over variable topography with steady states and inundation , 2008, J. Comput. Phys..

[17]  Hannes Taubenböck,et al.  Emergency Preparedness in the Case of a Tsunami—Evacuation Analysis and Traffic Optimization for the Indonesian City of Padang , 2010 .

[18]  Randall J. LeVeque,et al.  Validating Velocities in the GeoClaw Tsunami Model Using Observations near Hawaii from the 2011 Tohoku Tsunami , 2013, Pure and Applied Geophysics.

[19]  Qiuhua Liang,et al.  Adaptive quadtree simulation of shallow flows with wet-dry fronts over complex topography , 2009 .

[20]  Tzihong Chiueh,et al.  GAMER: A GRAPHIC PROCESSING UNIT ACCELERATED ADAPTIVE-MESH-REFINEMENT CODE FOR ASTROPHYSICS , 2009, 0907.3390.

[21]  Michael R. Motley,et al.  Three-dimensional modeling of tsunami forces on coastal communities , 2018, Coastal Engineering.

[22]  Cale Ash,et al.  Design of a Tsunami Vertical Evacuation Refuge Structure in Westport, Washington , 2015 .

[23]  Stéphane Popinet,et al.  A quadtree-adaptive multigrid solver for the Serre-Green-Naghdi equations , 2015, J. Comput. Phys..

[24]  Daniel T. Cox,et al.  Tsunami inundation modeling in constructed environments: A physical and numerical comparison of free-surface elevation, velocity, and momentum flux , 2012 .

[25]  Randall J. LeVeque,et al.  Multi-Scale Modeling of a 500-Year CSZ Tsunami Inundation with Constructed Environment , 2017 .

[26]  Peng Wang,et al.  Adaptive mesh fluid simulations on GPU , 2009, 0910.5547.

[27]  Xinsheng Qin,et al.  A comparison of a two-dimensional depth-averaged flow model and a three-dimensional RANS model for predicting tsunami inundation and fluid forces , 2018, Natural Hazards and Earth System Sciences.

[28]  M. A. Nosov,et al.  Tsunami waves of seismic origin: The modern state of knowledge , 2014, Izvestiya, Atmospheric and Oceanic Physics.

[29]  Gavin P. Hayes,et al.  Quantifying potential tsunami hazard in the Puysegur subduction zone, south of New Zealand , 2010 .

[30]  B. J. Lence,et al.  Assessing the value of mitigation strategies in reducing the impacts of rapid‐onset, catastrophic floods , 2009 .

[31]  Devin W. Silvia,et al.  ENZO: AN ADAPTIVE MESH REFINEMENT CODE FOR ASTROPHYSICS , 2013, 1307.2265.

[32]  José Miguel Mantas,et al.  Numerical simulation of tsunamis generated by landslides on multiple GPUs , 2016, Adv. Eng. Softw..

[33]  Matthias Aechtner,et al.  A conservative adaptive wavelet method for the shallow‐water equations on the sphere , 2013, 1404.0405.

[34]  John Shalf,et al.  BoxLib with Tiling: An Adaptive Mesh Refinement Software Framework , 2016, SIAM J. Sci. Comput..

[35]  Randall J. LeVeque,et al.  The GeoClaw software for depth-averaged flows with adaptive refinement , 2010, 1008.0455.

[36]  Y. Okada Surface deformation due to shear and tensile faults in a half-space , 1985 .

[37]  David L. George,et al.  Adaptive finite volume methods with well‐balanced Riemann solvers for modeling floods in rugged terrain: Application to the Malpasset dam‐break flood (France, 1959) , 2011 .

[38]  Hajime Mase,et al.  Computationally Efficient Tsunami Modeling on Graphics Processing Units (GPUs) , 2016 .

[39]  Qiuhua Liang,et al.  Simulation of dam‐ and dyke‐break hydrodynamics on dynamically adaptive quadtree grids , 2004 .

[40]  Manuel Jesús Castro Díaz,et al.  Simulation of tsunamis generated by landslides using adaptive mesh refinement on GPU , 2017, J. Comput. Phys..

[41]  Kyle T. Mandli,et al.  Adaptive mesh refinement for storm surge , 2014, 1401.5744.

[42]  Zhi-yuan Ren,et al.  Numerical analysis of impacts of 2011 Japan Tohoku tsunami on China Coast , 2013 .

[43]  Miguel Lastra,et al.  Simulation of shallow-water systems using graphics processing units , 2009, Math. Comput. Simul..

[44]  Efim Pelinovsky,et al.  Simulation of the trans-oceanic tsunami propagation due to the 1883 Krakatau volcanic eruption , 2003 .

[45]  José Miguel Mantas,et al.  Simulation of one-layer shallow water systems on multicore and CUDA architectures , 2010, The Journal of Supercomputing.

[46]  R. LeVeque,et al.  Adaptive Mesh Refinement Using Wave-Propagation Algorithms for Hyperbolic Systems , 1998 .

[47]  Roberto Benavente,et al.  What Can We Do to Forecast Tsunami Hazards in the Near Field Given Large Epistemic Uncertainty in Rapid Seismic Source Inversions? , 2018 .

[48]  Philip L.-F. Liu,et al.  Tsunami hazard and early warning system in South China Sea , 2009 .

[49]  R. LeVeque Wave Propagation Algorithms for Multidimensional Hyperbolic Systems , 1997 .

[50]  Stefan Scheer,et al.  A generic framework for tsunami evacuation planning , 2012 .

[51]  Loyce M. Adams,et al.  Tsunami Hazard Assessment of the Ocosta School Site in Westport, WA , 2013 .

[52]  Isidore Rigoutsos,et al.  An algorithm for point clustering and grid generation , 1991, IEEE Trans. Syst. Man Cybern..

[53]  Marc O. Eberhard,et al.  Tsunami-Induced Forces on Skewed Bridges , 2016 .

[54]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[55]  Tom Parsons,et al.  Probabilistic Analysis of Tsunami Hazards* , 2006 .

[56]  B. Fryxell,et al.  FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes , 2000 .

[57]  Stephan T. Grilli,et al.  Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model , 2003 .

[58]  Marc de la Asunción,et al.  Efficient GPU implementation of a two waves TVD-WAF method for the two-dimensional one layer shallow water system on structured meshes , 2013 .

[59]  Amos Salamon,et al.  HIGH RESOLUTION TSUNAMI MODELING AT THE MEDITERRANEAN COAST OF ISRAEL TOWARDS AN EARLY WARNING TSUNAMI SCENARIOS DATA BANK , 2011 .