Anti-ApoE Antibody Given after Plaque Onset Decreases Aβ Accumulation and Improves Brain Function in a Mouse Model of Aβ Amyloidosis

Apolipoprotein E (apoE) is the strongest known genetic risk factor for late onset Alzheimer's disease (AD). It influences amyloid-β (Aβ) clearance and aggregation, which likely contributes in large part to its role in AD pathogenesis. We recently found that HJ6.3, a monoclonal antibody against apoE, significantly reduced Aβ plaque load when given to APPswe/PS1ΔE9 (APP/PS1) mice starting before the onset of plaque deposition. To determine whether the anti-apoE antibody HJ6.3 affects Aβ plaques, neuronal network function, and behavior in APP/PS1 mice after plaque onset, we administered HJ6.3 (10 mg/kg/week) or PBS intraperitoneally to 7-month-old APP/PS1 mice for 21 weeks. HJ6.3 mildly improved spatial learning performance in the water maze, restored resting-state functional connectivity, and modestly reduced brain Aβ plaque load. There was no effect of HJ6.3 on total plasma cholesterol or cerebral amyloid angiopathy. To investigate the underlying mechanisms of anti-apoE immunotherapy, HJ6.3 was applied to the brain cortical surface and amyloid deposition was followed over 2 weeks using in vivo imaging. Acute exposure to HJ6.3 affected the course of amyloid deposition in that it prevented the formation of new amyloid deposits, limited their growth, and was associated with occasional clearance of plaques, a process likely associated with direct binding to amyloid aggregates. Topical application of HJ6.3 for only 14 d also decreased the density of amyloid plaques assessed postmortem. Collectively, these studies suggest that anti-apoE antibodies have therapeutic potential when given before or after the onset of Aβ pathology.

[1]  E. Otomo,et al.  Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer's disease and kuru plaque amyloid in Creutzfeldt-Jakob disease , 1991, Brain Research.

[2]  M. Pericak-Vance,et al.  Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[3]  J. Haines,et al.  Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. , 1993, Science.

[4]  M. Pericak-Vance,et al.  Binding of human apolipoprotein E to synthetic amyloid beta peptide: isoform-specific effects and implications for late-onset Alzheimer disease. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[5]  J. Ma,et al.  Amyloid-associated proteins alpha 1-antichymotrypsin and apolipoprotein E promote assembly of Alzheimer beta-protein into filaments. , 1994, Nature.

[6]  A. M. Saunders,et al.  Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease , 1994, Nature Genetics.

[7]  T Vogel,et al.  Acceleration of Alzheimer's fibril formation by apolipoprotein E in vitro. , 1994, The American journal of pathology.

[8]  H. Brewer,et al.  Amyloid-associated proteins α1-antichymotrypsin and apolipoprotein E promote assembly of Alzheimer β-protein into filaments , 1994, Nature.

[9]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[10]  S. Paul,et al.  Apolipoprotein E is essential for amyloid deposition in the APP(V717F) transgenic mouse model of Alzheimer's disease. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[11]  R. Motter,et al.  Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse , 1999, Nature.

[12]  A. Fagan,et al.  Apolipoprotein E facilitates neuritic and cerebrovascular plaque formation in an Alzheimer's disease model , 2000, Annals of neurology.

[13]  R. Motter,et al.  Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease , 2000, Nature Medicine.

[14]  Jau-Shyong Hong,et al.  Molecular consequences of activated microglia in the brain: overactivation induces apoptosis , 2001, Journal of neurochemistry.

[15]  B. Teter,et al.  The presence of apoE4, not the absence of apoE3, contributes to AD pathology. , 2002, Journal of Alzheimer's disease : JAD.

[16]  M. Staufenbiel,et al.  Cerebral hemorrhage after passive anti-Abeta immunotherapy. , 2002, Science.

[17]  J. Hardy,et al.  The Amyloid Hypothesis of Alzheimer ’ s Disease : Progress and Problems on the Road to Therapeutics , 2009 .

[18]  D. Holtzman,et al.  Brain to Plasma Amyloid-β Efflux: a Measure of Brain Amyloid Burden in a Mouse Model of Alzheimer's Disease , 2002, Science.

[19]  D. Wozniak,et al.  Ataxia and Paroxysmal Dyskinesia in Mice Lacking Axonally Transported FGF14 , 2002, Neuron.

[20]  M. Staufenbiel,et al.  Cerebral Hemorrhage After Passive Anti-Aβ Immunotherapy , 2002, Science.

[21]  J. Ashford,et al.  ApoE4: is it the absence of good or the presence of bad? , 2002, Journal of Alzheimer's disease : JAD.

[22]  B. Hyman,et al.  Imaging Amyloid-β Deposits In Vivo , 2002 .

[23]  Dave Morgan,et al.  Intracranially Administered Anti-Αβ Antibodies Reduce β-Amyloid Deposition by Mechanisms Both Independent of and Associated with Microglial Activation , 2003, The Journal of Neuroscience.

[24]  D. Holtzman,et al.  Apolipoprotein E Markedly Facilitates Age-Dependent Cerebral Amyloid Angiopathy and Spontaneous Hemorrhage in Amyloid Precursor Protein Transgenic Mice , 2003, The Journal of Neuroscience.

[25]  D. Wilcock,et al.  Intracranially administered anti-Abeta antibodies reduce beta-amyloid deposition by mechanisms both independent of and associated with microglial activation. , 2003, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  D. Wilcock,et al.  Passive Amyloid Immunotherapy Clears Amyloid and Transiently Activates Microglia in a Transgenic Mouse Model of Amyloid Deposition , 2004, The Journal of Neuroscience.

[27]  D. Wilcock,et al.  Passive immunotherapy against Aβ in aged APP-transgenic mice reverses cognitive deficits and depletes parenchymal amyloid deposits in spite of increased vascular amyloid and microhemorrhage , 2004, Journal of Neuroinflammation.

[28]  Joanna L. Jankowsky,et al.  Mutant presenilins specifically elevate the levels of the 42 residue β-amyloid peptide in vivo: evidence for augmentation of a 42-specific γ secretase , 2004 .

[29]  Maureen P. Boyle,et al.  Apoptotic neurodegeneration induced by ethanol in neonatal mice is associated with profound learning/memory deficits in juveniles followed by progressive functional recovery in adults , 2004, Neurobiology of Disease.

[30]  D. Borchelt,et al.  Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. , 2004, Human molecular genetics.

[31]  H. Braak,et al.  Apolipoprotein E co-localizes with newly formed amyloid β-protein (Aβ) deposits lacking immunoreactivity against N-terminal epitopes of Aβ in a genotype-dependent manner , 2005, Acta Neuropathologica.

[32]  H. Braak,et al.  Apolipoprotein E co-localizes with newly formed amyloid beta-protein (Abeta) deposits lacking immunoreactivity against N-terminal epitopes of Abeta in a genotype-dependent manner. , 2005, Acta neuropathologica.

[33]  M. Roth,et al.  The Liver X Receptor Ligand T0901317 Decreases Amyloid β Production in Vitro and in a Mouse Model of Alzheimer's Disease* , 2004, Journal of Biological Chemistry.

[34]  Maurizio Corbetta,et al.  The human brain is intrinsically organized into dynamic, anticorrelated functional networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Inder M Verma,et al.  Gene delivery of human apolipoprotein E alters brain Abeta burden in a mouse model of Alzheimer's disease. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[36]  P. T. Nguyen,et al.  Dendritic Spine Abnormalities in Amyloid Precursor Protein Transgenic Mice Demonstrated by Gene Transfer and Intravital Multiphoton Microscopy , 2005, The Journal of Neuroscience.

[37]  W. H. Jordan,et al.  Exacerbation of Cerebral Amyloid Angiopathy-Associated Microhemorrhage in Amyloid Precursor Protein Transgenic Mice by Immunotherapy Is Dependent on Antibody Recognition of Deposited Forms of Amyloid β , 2005, The Journal of Neuroscience.

[38]  M. Roth,et al.  The liver X receptor ligand T0901317 decreases amyloid beta production in vitro and in a mouse model of Alzheimer's disease. , 2005, The Journal of biological chemistry.

[39]  D. Quartermain,et al.  Blocking the apolipoprotein E/amyloid-β interaction as a potential therapeutic approach for Alzheimer's disease , 2006, Proceedings of the National Academy of Sciences.

[40]  Peter Tontonoz,et al.  Attenuation of neuroinflammation and Alzheimer's disease pathology by liver x receptors , 2007, Proceedings of the National Academy of Sciences.

[41]  Katie Hamm,et al.  apoE isoform-specific disruption of amyloid beta peptide clearance from mouse brain. , 2008, The Journal of clinical investigation.

[42]  D. Holtzman,et al.  ApoE Promotes the Proteolytic Degradation of Aβ , 2008, Neuron.

[43]  D. Holtzman,et al.  Active and passive immunotherapy for neurodegenerative disorders. , 2008, Annual review of neuroscience.

[44]  T. Iwatsubo,et al.  Aβ Immunotherapy: Intracerebral Sequestration of Aβ by an Anti-Aβ Monoclonal Antibody 266 with High Affinity to Soluble Aβ , 2009, The Journal of Neuroscience.

[45]  D. Holtzman,et al.  Overexpression of Low-Density Lipoprotein Receptor in the Brain Markedly Inhibits Amyloid Deposition and Increases Extracellular Aβ Clearance , 2009, Neuron.

[46]  Abraham Z. Snyder,et al.  Resting-state functional connectivity in the human brain revealed with diffuse optical tomography , 2009, NeuroImage.

[47]  D. Michaelson,et al.  Pathological synergism between amyloid-beta and apolipoprotein E4--the most prevalent yet understudied genetic risk factor for Alzheimer's disease. , 2009, Journal of Alzheimer's disease : JAD.

[48]  N. Fitz,et al.  Neurobiology of Disease Liver X Receptor Agonist Treatment Ameliorates Amyloid Pathology and Memory Deficits Caused by High-fat Diet in App23 Mice , 2022 .

[49]  E. Masliah,et al.  Can Alzheimer disease be prevented by amyloid-β immunotherapy? , 2010, Nature Reviews Neurology.

[50]  J. Morris,et al.  Alzheimer’s Disease: The Challenge of the Second Century , 2011, Science Translational Medicine.

[51]  David M Holtzman,et al.  Human Apoe Isoforms Differentially Regulate Brain Amyloid-β Peptide Clearance Nih Public Access , 2022 .

[52]  D. Holtzman,et al.  Haploinsufficiency of Human APOE Reduces Amyloid Deposition in a Mouse Model of Amyloid-β Amyloidosis , 2011, The Journal of Neuroscience.

[53]  Jee Hoon Roh,et al.  Neuronal activity regulates the regional vulnerability to amyloid-β deposition , 2011, Nature Neuroscience.

[54]  Abraham Z. Snyder,et al.  Imaging of Functional Connectivity in the Mouse Brain , 2011, PloS one.

[55]  A. Gillespie,et al.  Reducing Human Apolipoprotein E Levels Attenuates Age-Dependent Aβ Accumulation in Mutant Human Amyloid Precursor Protein Transgenic Mice , 2012, The Journal of Neuroscience.

[56]  Adam W. Bero,et al.  Bidirectional Relationship between Functional Connectivity and Amyloid-β Deposition in Mouse Brain , 2012, The Journal of Neuroscience.

[57]  D. Holtzman,et al.  Anti-apoE immunotherapy inhibits amyloid accumulation in a transgenic mouse model of Aβ amyloidosis , 2012, The Journal of experimental medicine.

[58]  Tim West,et al.  Low-density lipoprotein receptor overexpression enhances the rate of brain-to-blood Aβ clearance in a mouse model of β-amyloidosis , 2012, Proceedings of the National Academy of Sciences.

[59]  W. H. Jordan,et al.  A Plaque-Specific Antibody Clears Existing β-amyloid Plaques in Alzheimer's Disease Mice , 2012, Neuron.

[60]  B. Hyman,et al.  Gene Transfer of Human Apoe Isoforms Results in Differential Modulation of Amyloid Deposition and Neurotoxicity in Mouse Brain , 2013, Science Translational Medicine.