Identical Wells, Symmetry Breaking, and the Near-Unitary Limit

[1]  N. Harshman Infinite Barriers and Symmetries for a Few Trapped Particles in One Dimension , 2016, 1608.07189.

[2]  Line Burholt Kristensen,et al.  CONAN - The cruncher of local exchange coefficients for strongly interacting confined systems in one dimension , 2016, Comput. Phys. Commun..

[3]  A. Minguzzi,et al.  Exact density profiles and symmetry classification for strongly interacting multi-component Fermi gases in tight waveguides , 2016, 1603.00252.

[4]  M. Foss-Feig,et al.  Entangling two transportable neutral atoms via local spin exchange , 2015, Nature.

[5]  S. Reimann,et al.  Antiferromagnetic Heisenberg Spin Chain of a Few Cold Atoms in a One-Dimensional Trap. , 2015, Physical review letters.

[6]  N. Harshman One-Dimensional Traps, Two-Body Interactions, Few-Body Symmetries. II. N Particles , 2015, 1505.00659.

[7]  Li Yang,et al.  Strongly interacting quantum gases in one-dimensional traps , 2015, 1502.01706.

[8]  D. Blume,et al.  One-dimensional Fermi gas with a single impurity in a harmonic trap: Perturbative description of the upper branch , 2015, 1501.04369.

[9]  Vincent M. Klinkhamer,et al.  Two fermions in a double well: exploring a fundamental building block of the Hubbard model. , 2014, Physical review letters.

[10]  P. Massignan,et al.  Strong-coupling ansatz for the one-dimensional Fermi gas in a harmonic potential , 2014, Science Advances.

[11]  N. Harshman One-Dimensional Traps, Two-Body Interactions, Few-Body Symmetries: I. One, Two, and Three Particles , 2014, 1501.00215.

[12]  M. Foss-Feig,et al.  Two-particle quantum interference in tunnel-coupled optical tweezers , 2014, Science.

[13]  S. Reimann,et al.  Quantum magnetism without lattices in strongly interacting one-dimensional spinor gases , 2013, 1310.3705.

[14]  A. Jensen,et al.  Strongly interacting confined quantum systems in one dimension , 2013, Nature Communications.

[15]  T. Ho,et al.  Ground-state ferromagnetic transition in strongly repulsive one-dimensional Fermi gases , 2013, 1305.6361.

[16]  S. Jochim,et al.  From Few to Many: Observing the Formation of a Fermi Sea One Atom at a Time , 2013, Science.

[17]  S. Jochim,et al.  Deterministic Preparation of a Tunable Few-Fermion System , 2011, Science.

[18]  C. Miniatura,et al.  Exact solution for the degenerate ground-state manifold of a strongly interacting one-dimensional Bose-Fermi mixture , 2011, 1101.0702.

[19]  M. Girardeau Tonks-Girardeau and super-Tonks-Girardeau states of a trapped one-dimensional spinor Bose gas , 2010, 1008.0428.

[20]  M. Girardeau Two super-Tonks-Girardeau states of a trapped one-dimensional spinor Fermi gas , 2010, 1004.2925.

[21]  M. Girardeau,et al.  Wave functions of the super-Tonks-Girardeau gas and the trapped one-dimensional hard-sphere Bose gas , 2009, 0912.1633.

[22]  Zhong-Qi Ma,et al.  Mathematical calculation for exact solutions of infinitely strongly interacting Fermi gases in tight waveguides , 2009 .

[23]  J. Danzl,et al.  Realization of an Excited, Strongly Correlated Quantum Gas Phase , 2009, Science.

[24]  Zhong-Qi Ma,et al.  Exact solution for infinitely strongly interacting Fermi gases in tight waveguides. , 2008, Physical review letters.

[25]  杨振宁 Ground State of Fermions in a 1D Trap with δ Function Interaction , 2009 .

[26]  F. Deuretzbacher,et al.  Exact solution of strongly interacting quasi-one-dimensional spinor Bose gases. , 2007, Physical review letters.

[27]  A. Minguzzi,et al.  Soluble models of strongly interacting ultracold gas mixtures in tight waveguides. , 2007, Physical review letters.

[28]  D. Weiss,et al.  A quantum Newton's cradle , 2006, Nature.

[29]  T. Kinoshita A QUANTUM NEWTONS CRADLE , 2006 .

[30]  Toshiya Kinoshita,et al.  Observation of a One-Dimensional Tonks-Girardeau Gas , 2004, Science.

[31]  Immanuel Bloch,et al.  Tonks–Girardeau gas of ultracold atoms in an optical lattice , 2004, Nature.

[32]  M. Olshanii Atomic Scattering in the Presence of an External Confinement and a Gas of Impenetrable Bosons , 1998, cond-mat/9804130.

[33]  M. Girardeau,et al.  Relationship between Systems of Impenetrable Bosons and Fermions in One Dimension , 1960 .