Amplification of histone genes by circular chromosome formation in Saccharomyces cerevisiae

[1]  J. Workman,et al.  Yeast Recombination Enhancer Is Stimulated by Transcription Activation , 2005, Molecular and Cellular Biology.

[2]  P. Mieczkowski,et al.  The compact chromatin structure of a Ty repeated sequence suppresses recombination hotspot activity in Saccharomyces cerevisiae. , 2004, Molecular cell.

[3]  C. Zeyl Capturing the adaptive mutation in yeast. , 2004, Research in microbiology.

[4]  A. Gunjan,et al.  A Rad53 Kinase-Dependent Surveillance Mechanism that Regulates Histone Protein Levels in S. cerevisiae , 2003, Cell.

[5]  Ronald W. Davis,et al.  Functional profiling of the Saccharomyces cerevisiae genome , 2002, Nature.

[6]  T. Petes,et al.  Meiotic recombination hot spots and cold spots , 2001, Nature Reviews Genetics.

[7]  J. Haber,et al.  A 700 bp cis-Acting Region Controls Mating-Type Dependent Recombination Along the Entire Left Arm of Yeast Chromosome III , 1996, Cell.

[8]  J. Hirschhorn,et al.  A new class of histone H2A mutations in Saccharomyces cerevisiae causes specific transcriptional defects in vivo , 1995, Molecular and cellular biology.

[9]  Steven A. Brown,et al.  Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. , 1992, Genes & development.

[10]  M. Osley,et al.  A yeast H2A-H2B promoter can be regulated by changes in histone gene copy number. , 1990, Genes & development.

[11]  M. Grunstein,et al.  Nucleosome loss activates yeast downstream promoters in vivo , 1988, Cell.

[12]  M. Osley,et al.  The effect of histone gene deletions on chromatin structure in Saccharomyces cerevisiae. , 1988, Science.

[13]  M. Kupiec,et al.  Allelic and ectopic recombination between Ty elements in yeast. , 1988, Genetics.

[14]  M. Kupiec,et al.  Meiotic recombination between repeated transposable elements in Saccharomyces cerevisiae , 1988, Molecular and cellular biology.

[15]  F. Winston,et al.  Changes in histone gene dosage alter transcription in yeast. , 1988, Genes & development.

[16]  M. Osley,et al.  The two gene pairs encoding H2A and H2B play different roles in the Saccharomyces cerevisiae life cycle , 1987, Molecular and cellular biology.

[17]  M. Grunstein,et al.  Histone H2B repression causes cell-cycle-specific arrest in yeast: Effects on chromosomal segregation, replication, and transcription , 1987, Cell.

[18]  D. Mccormick Sequence the Human Genome , 1986, Bio/Technology.

[19]  L. Hartwell,et al.  Normal stoichiometry of histone dimer sets is necessary for high fidelity of mitotic chromosome transmission , 1986, Cell.

[20]  D. Schwartz,et al.  Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis , 1984, Cell.

[21]  G. Roeder Unequal crossing-over between yeast transposable elements , 1983, Molecular and General Genetics MGG.

[22]  M. Grunstein,et al.  Histone H2A subtypes associate interchangeably in vivo with histone H2B subtypes. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[23]  J. Wallis,et al.  Histone H2B subtypes are dispensable during the yeast cell cycle , 1981, Cell.

[24]  M. Rosbash,et al.  Isolation of yeast histone genes H2A and H2B , 1979, Cell.

[25]  R. W. Davis,et al.  High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[26]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.