Прирост энтропии и соответствие Чоя - Ямилковского для бесконечномерных квантовых эволюций@@@Entropy gain and the Choi - Jamiolkowski correspondence for infinite-dimensional quantum evolutions
暂无分享,去创建一个
[1] G. Dell'Antonio,et al. On the limits of sequences of normal states , 2010 .
[2] H. Spohn. Kinetic equations from Hamiltonian dynamics: Markovian limits , 1980 .
[3] M. B. Plenio,et al. Squeezing the limit: quantum benchmarks for the teleportation and storage of squeezed states , 2008, 0808.2260.
[4] J. Eisert,et al. Multi-mode bosonic Gaussian channels , 2008, 0804.0511.
[5] Alexander S. Holevo,et al. One-mode quantum Gaussian channels: Structure and quantum capacity , 2007, Probl. Inf. Transm..
[6] M. E. Shirokov. Entropic characteristics of subsets of states , 2005 .
[7] On the notion of entanglement in Hilbert spaces , 2005 .
[8] R. Alicki. Isotropic quantum spin channels and additivity questions , 2004, quant-ph/0402080.
[9] J. Cirac,et al. Characterization of Gaussian operations and distillation of Gaussian states , 2002, quant-ph/0204085.
[10] A. Wehrl. General properties of entropy , 1978 .
[11] M. Junge,et al. Multiplicativity of Completely Bounded p-Norms Implies a New Additivity Result , 2005, quant-ph/0506196.
[12] Alexander S. Holevo,et al. Entanglement-breaking channels in infinite dimensions , 2008, Probl. Inf. Transm..
[13] J. Wehr,et al. Entanglement of Positive Definite Functions on Compact Groups , 2007, 0705.2965.