Serine and alanine mutagenesis of the nine native cysteine residues of the human A(1) adenosine receptor.

[1]  S. Rivkees,et al.  Identification of the Adenine Binding Site of the Human A1 Adenosine Receptor* , 1999, The Journal of Biological Chemistry.

[2]  D. Oprian,et al.  Disulfide bond exchange in rhodopsin. , 1998, Biochemistry.

[3]  J. Vilardaga,et al.  Mutational analysis of extracellular cysteine residues of rat secretin receptor shows that disulfide bridges are essential for receptor function. , 1997, European journal of biochemistry.

[4]  J. Stankova,et al.  Role of the Cys90, Cys95 and Cys173 residues in the structure and function of the human platelet‐activating factor receptor , 1997, FEBS letters.

[5]  G. Milligan,et al.  A disulfide bonding interaction role for cysteines in the extracellular domain of the thyrotropin-releasing hormone receptor. , 1996, Endocrinology.

[6]  J. Wess,et al.  Glutamate residues in the second extracellular loop of the human A2a adenosine receptor are required for ligand recognition. , 1996, Molecular pharmacology.

[7]  Michael G. Davis,et al.  Mutagenic Analysis of Platelet Thromboxane Receptor Cysteines , 1996, The Journal of Biological Chemistry.

[8]  J. Linden,et al.  Double tagging recombinant A1- and A2A-adenosine receptors with hexahistidine and the FLAG epitope. Development of an efficient generic protein purification procedure. , 1996, Biochemical pharmacology.

[9]  Kenneth A Jacobson,et al.  Molecular architecture of G protein‐coupled receptors , 1996, Drug development research.

[10]  A. Couvineau,et al.  Mutational analysis of cysteine residues within the extracellular domains of the human vasoactive intestinal peptide (VIP) 1 receptor identifies seven mutants that are defective in VIP binding. , 1995, Biochemical and biophysical research communications.

[11]  J. Wess,et al.  Site-directed Mutagenesis Identifies Residues Involved in Ligand Recognition in the Human A2a Adenosine Receptor (*) , 1995, The Journal of Biological Chemistry.

[12]  H. Khorana,et al.  Structure and function in rhodopsin: replacement by alanine of cysteine residues 110 and 187, components of a conserved disulfide bond in rhodopsin, affects the light-activated metarhodopsin II state. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Susanne Trumpp-Kallmeyer,et al.  Modeling of G-Protein-Coupled Receptors , 1994 .

[14]  L. Limbird,et al.  Mutations of the alpha 2A-adrenergic receptor that eliminate detectable palmitoylation do not perturb receptor-G-protein coupling. , 1993, The Journal of biological chemistry.

[15]  J Hoflack,et al.  Modeling of G-protein-coupled receptors: application to dopamine, adrenaline, serotonin, acetylcholine, and mammalian opsin receptors. , 1992, Journal of medicinal chemistry.

[16]  C. Fraser,et al.  Site-directed mutagenesis of the rat m1 muscarinic acetylcholine receptor. Role of conserved cysteines in receptor function. , 1992, The Journal of biological chemistry.

[17]  C. Fraser,et al.  In vitro mutagenesis and the search for structure-function relationships among G protein-coupled receptors. , 1992, The Biochemical journal.

[18]  H. Khorana,et al.  Assembly of functional rhodopsin requires a disulfide bond between cysteine residues 110 and 187. , 1990, The Journal of biological chemistry.

[19]  E. Hulme,et al.  Muscarinic acetylcholine receptors. Peptide sequencing identifies residues involved in antagonist binding and disulfide bond formation. , 1990, The Journal of biological chemistry.

[20]  M. Caron,et al.  Role of extracellular disulfide-bonded cysteines in the ligand binding function of the beta 2-adrenergic receptor. , 1990, Biochemistry.

[21]  M. Caron,et al.  Palmitoylation of the human beta 2-adrenergic receptor. Mutation of Cys341 in the carboxyl tail leads to an uncoupled nonpalmitoylated form of the receptor. , 1989, The Journal of biological chemistry.

[22]  A. S. Bogachuk,et al.  Two adjacent cysteine residues in the C‐terminal cytoplasmic fragment of bovine rhodopsin are palmitylated , 1988, FEBS letters.

[23]  Richard Wolfenden,et al.  Comparing the polarities of the amino acids: side-chain distribution coefficients between the vapor phase, cyclohexane, 1-octanol, and neutral aqueous solution , 1988 .

[24]  C. Strader,et al.  Structural features required for ligand binding to the beta‐adrenergic receptor. , 1987, The EMBO journal.

[25]  C. Malbon,et al.  Fat cell beta 1-adrenergic receptor: structural evidence for existence of disulfide bridges essential for ligand binding. , 1985, Biochemistry.

[26]  R. Dessy Perkin-elmer corp. , 1983, Analytical chemistry.

[27]  R. Doolittle,et al.  A simple method for displaying the hydropathic character of a protein. , 1982, Journal of molecular biology.

[28]  P M Cullis,et al.  Affinities of amino acid side chains for solvent water. , 1981, Biochemistry.