Compression and rendering of iso-surfaces and point sampled geometry

In this paper we present a streaming compression scheme for gigantic point sets including per-point normals. This scheme extends on our previous Duodecim approach [21] in two different ways. First, we show how to use this approach for the compression and rendering of high-resolution iso-surfaces in volumetric data sets. Second, we use deferred shading of point primitives to considerably improve rendering quality. Iso-surface reconstruction is performed in a hexagonal close packing (HCP) grid, into which the initial data set is resampled. Normals are resampled from the initial domain using volumetric gradients. By incremental encoding, only slightly more than 3 bits per surface point and 5 bits per surface normal are required at high fidelity. The compressed data stream can be decoded in the graphics processing unit (GPU). Decoded point positions are saved in graphics memory, and they are then used on the GPU again to render point primitives. In this way high quality gigantic data sets can directly be rendered from their compressed representation in local GPU memory at interactive frame rates (see Fig. 1).

[1]  Dietmar Saupe,et al.  Compression of Isosurfaces , 2001, VMV.

[2]  Allen Gersho,et al.  Vector quantization and signal compression , 1991, The Kluwer international series in engineering and computer science.

[3]  O. Mattausch Practical Reconstruction and Hardware-Accelerated Direct Volume Rendering on Body-Centered Cubic Grids , 2004 .

[4]  Klaus Mueller,et al.  Space-time points: 4D splatting on efficient grids , 2002, Symposium on Volume Visualization and Graphics, 2002. Proceedings. IEEE / ACM SIGGRAPH.

[5]  Martin Isenburg,et al.  Streaming meshes , 2005, VIS 05. IEEE Visualization, 2005..

[6]  J. Edward Swan,et al.  Proceedings of the conference on Visualization '02 , 2001 .

[7]  Daniel G. Aliaga,et al.  Hybrid simplification: combining multi-resolution polygon and point rendering , 2001, Proceedings Visualization, 2001. VIS '01..

[8]  Marc Alexa,et al.  Point-based computer graphics , 2004, SIGGRAPH '04.

[9]  Enrico Gobbetti,et al.  Far voxels: a multiresolution framework for interactive rendering of huge complex 3D models on commodity graphics platforms , 2005, ACM Trans. Graph..

[10]  N. Johnson Convex Polyhedra with Regular Faces , 1966, Canadian Journal of Mathematics.

[11]  Markus H. Gross,et al.  Progressive Compression of Point-Sampled Models , 2004, PBG.

[12]  Leif Kobbelt,et al.  A survey of point-based techniques in computer graphics , 2004, Comput. Graph..

[13]  Enrico Gobbetti,et al.  Layered Point Clouds , 2004, PBG.

[14]  Leif Kobbelt,et al.  Efficient High Quality Rendering of Point Sampled Geometry , 2002, Rendering Techniques.

[15]  Matthias Zwicker,et al.  Object Space EWA Surface Splatting: A Hardware Accelerated Approach to High Quality Point Rendering , 2002, Comput. Graph. Forum.

[16]  Baoquan Chen,et al.  POP: a hybrid point and polygon rendering system for large data , 2001, Proceedings Visualization, 2001. VIS '01..

[17]  Marc Alexa,et al.  Point set surfaces , 2001, Proceedings Visualization, 2001. VIS '01..

[18]  Matthias Zwicker,et al.  Surface splatting , 2001, SIGGRAPH.

[19]  Han-Wei Shen,et al.  A Near Optimal Isosurface Extraction Algorithm Using the Span Space , 1996, IEEE Trans. Vis. Comput. Graph..

[20]  Jens Schneider,et al.  DUODECIM - a structure for point scan compression and rendering , 2005, Proceedings Eurographics/IEEE VGTC Symposium Point-Based Graphics, 2005..

[21]  Tamal K. Dey,et al.  PMR: point to mesh rendering, a feature-based approach , 2002, IEEE Visualization, 2002. VIS 2002..

[22]  Matthias Zwicker,et al.  Perspective Accurate Splatting , 2004, Graphics Interface.

[23]  Matthias Zwicker,et al.  Surfels: surface elements as rendering primitives , 2000, SIGGRAPH.

[24]  Matthias Zwicker,et al.  High-quality surface splatting on today's GPUs , 2005, Proceedings Eurographics/IEEE VGTC Symposium Point-Based Graphics, 2005..

[25]  Charles Hansen,et al.  View dependent isosurface extraction , 1998 .

[26]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[27]  Marc Levoy,et al.  The digital Michelangelo project: 3D scanning of large statues , 2000, SIGGRAPH.

[28]  Marc Levoy,et al.  QSplat: a multiresolution point rendering system for large meshes , 2000, SIGGRAPH.

[29]  William J. Dally,et al.  Point Sample Rendering , 1998, Rendering Techniques.

[30]  Dietmar Saupe,et al.  Compression of Point-Based 3D Models by Shape-Adaptive Wavelet Coding of Multi-Height Fields , 2004, PBG.

[31]  Lukas Mroz,et al.  Space-Efficient Boundary Representation of Volumetric Objects , 2001, VisSym.

[32]  E LorensenWilliam,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987 .

[33]  Rüdiger Westermann,et al.  Efficiently using graphics hardware in volume rendering applications , 1998, SIGGRAPH.

[34]  Marc Levoy,et al.  Efficient ray tracing of volume data , 1990, TOGS.

[35]  Marc Stamminger,et al.  Sequential point trees , 2003, ACM Trans. Graph..

[36]  Leif Kobbelt,et al.  High-quality point-based rendering on modern GPUs , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..

[37]  Marc Levoy,et al.  The Use of Points as a Display Primitive , 2000 .

[38]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.