Perfectly matched layers in 1-d : energy decay for continuous and semi-discrete waves

In this paper we investigate the efficiency of the method of perfectly matched layers (PML) for the 1-d wave equation. The PML method furnishes a way to compute solutions of the wave equation for exterior problems in a finite computational domain by adding a damping term on the matched layer. In view of the properties of solutions in the whole free space, one expects the energy of solutions obtained by the PML method to tend to zero as t → ∞, and the rate of decay can be understood as a measure of the efficiency of the method. We prove, indeed, that the exponential decay holds and characterize the exponential decay rate in terms of the parameters and damping potentials entering in the implementation of the PML method. We also consider a space semi-discrete numerical approximation scheme and we prove that, due to the high frequency spurious numerical solutions, the decay rate fails to be uniform as the mesh size parameter h tends to zero. We show however that adding a numerical viscosity term allows us to recover the property of exponential decay of the energy uniformly on h. Although our analysis is restricted to finite differences in 1-d, most of the methods and results apply to finite elements on regular meshes and to multi-dimensional problems.

[1]  김정기,et al.  Propagation , 1994, Encyclopedia of Evolutionary Psychological Science.

[2]  E. Zuazua,et al.  The rate at which energy decays in a string damped at one end , 1995 .

[3]  Antoine Henrot,et al.  A Spillover Phenomenon in the Optimal Location of Actuators , 2005, SIAM J. Control. Optim..

[4]  ELI TURKEL,et al.  A CARTESIAN PERFECTLY MATCHED LAYER FOR THE HELMHOLTZ EQUATION , 2022 .

[5]  I. Singer,et al.  A perfectly matched layer for the Helmholtz equation in a semi-infinite strip , 2004 .

[6]  Fabricio Maciá Lang Propagación y control de vibraciones en medios discretos y continuos , 2002 .

[7]  S. Tsynkov Numerical solution of problems on unbounded domains. a review , 1998 .

[8]  E. Zuazua Boundary observability for the finite-difference space semi-discretizations of the 2-D wave equation in the square , 1999 .

[9]  Peter Monk,et al.  The Perfectly Matched Layer in Curvilinear Coordinates , 1998, SIAM J. Sci. Comput..

[10]  Patrick Joly,et al.  Stability of perfectly matched layers, group velocities and anisotropic waves , 2003 .

[11]  Alfredo Bermúdez,et al.  An exact bounded PML for the Helmholtz equation , 2004 .

[12]  F. Hu Absorbing Boundary Conditions , 2004 .

[13]  Joseph E. Pasciak,et al.  Analysis of a finite element PML approximation for the three dimensional time-harmonic Maxwell problem , 2008, Math. Comput..

[14]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[15]  Fabricio Macià The Effect of Group Velocity in the Numerical Analysis of Control Problems for the Wave Equation , 2003 .

[16]  D. Gottlieb,et al.  Regular Article: Well-posed Perfectly Matched Layers for Advective Acoustics , 1999 .

[17]  Patrick Joly,et al.  Mathematical Modelling and Numerical Analysis on the Analysis of B ´ Erenger's Perfectly Matched Layers for Maxwell's Equations , 2022 .

[18]  S. Gedney,et al.  On the long-time behavior of unsplit perfectly matched layers , 2004, IEEE Transactions on Antennas and Propagation.

[19]  D. L. Russell Review: J.-L. Lions, Controlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués , 1990 .

[20]  David Gottlieb,et al.  On the construction and analysis of absorbing layers in CEM , 1998 .

[21]  A. Bermúdez,et al.  Numerical simulation of time-harmonic scattering problems with an optimal PML , 2006 .

[22]  Enrique Zuazua,et al.  Boundary observability for the space-discretizations of the 1 — d wave equation , 1998 .

[23]  R. Glowinski Ensuring well-posedness by analogy; Stokes problem and boundary control for the wave equation , 1992 .

[24]  G. Lebeau,et al.  Equation des Ondes Amorties , 1996 .

[25]  Carlos Castro,et al.  Boundary controllability of a linear semi-discrete 1-D wave equation derived from a mixed finite element method , 2006, Numerische Mathematik.

[26]  Enrique Zuazua,et al.  A two-grid approximation scheme for nonlinear Schrödinger equations: dispersive properties and convergence , 2005 .

[27]  Jacques-Louis Lions Contrôlabilite exacte et homogénéisation (I) , 1988 .

[28]  E. Zuazua,et al.  The rate at which energy decays in a damped String , 1994 .

[29]  H. Banks,et al.  Exponentially stable approximations of weakly damped wave equations , 1991 .

[30]  Alfredo Bermúdez,et al.  An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems , 2007, J. Comput. Phys..

[31]  L. Trefethen Group velocity in finite difference schemes , 1981 .

[32]  Carlos Castro,et al.  Achieving Arbitrarily Large Decay in the Damped Wave Equation , 2001, SIAM J. Control. Optim..

[33]  Enrique Zuazua,et al.  Propagation, Observation, and Control of Waves Approximated by Finite Difference Methods , 2005, SIAM Rev..

[34]  E. Turkel,et al.  Absorbing PML boundary layers for wave-like equations , 1998 .

[35]  David Gottlieb,et al.  A Mathematical Analysis of the PML Method , 1997 .

[36]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[37]  R. Young,et al.  An introduction to nonharmonic Fourier series , 1980 .

[38]  M. Gunzburger,et al.  Boundary conditions for the numerical solution of elliptic equations in exterior regions , 1982 .

[39]  Matti Lassas,et al.  On the existence and convergence of the solution of PML equations , 1998, Computing.

[40]  Louis Roder Tcheugoué Tébou,et al.  Uniform exponential long time decay for the space semi-discretization of a locally damped wave equation via an artificial numerical viscosity , 2003, Numerische Mathematik.

[41]  Jacques-Louis Lions,et al.  Well-posed absorbing layer for hyperbolic problems , 2002, Numerische Mathematik.

[42]  Peter G. Petropoulos,et al.  Reflectionless Sponge Layers as Absorbing Boundary Conditions for the Numerical Solution of Maxwell Equations in Rectangular, Cylindrical, and Spherical Coordinates , 2000, SIAM J. Appl. Math..

[43]  Gunilla Kreiss,et al.  Perfectly Matched Layers for Hyperbolic Systems: General Formulation, Well-posedness, and Stability , 2006, SIAM J. Appl. Math..

[44]  A. Bermúdez,et al.  Optimal perfectly matched layers for time-harmonic acoustic scattering problems , 2006 .

[45]  Alfredo Bermúdez,et al.  An Exact Bounded Perfectly Matched Layer for Time-Harmonic Scattering Problems , 2007, SIAM J. Sci. Comput..