MoS2–HgTe Quantum Dot Hybrid Photodetectors beyond 2 µm

Mercury telluride (HgTe) colloidal quantum dots (CQDs) have been developed as promising materials for the short and mid-wave infrared photodetection applications because of their low cost, solution processing, and size tunable absorption in the short wave and mid-infrared spectrum. However, the low mobility and poor photogain have limited the responsivity of HgTe CQD-based photodetectors to only tens of mA W-1 . Here, HgTe CQDs are integrated on a TiO2 encapsulated MoS2 transistor channel to form hybrid phototransistors with high responsivity of ≈106 A W-1 , the highest reported to date for HgTe QDs. By operating the phototransistor in the depletion regime enabled by the gate modulated current of MoS2 , the noise current is significantly suppressed, leading to an experimentally measured specific detectivity D* of ≈1012 Jones at a wavelength of 2 µm. This work demonstrates for the first time the potential of the hybrid 2D/QD detector technology in reaching out to wavelengths beyond 2 µm with compelling sensitivity.

[1]  G. Konstantatos,et al.  Solution-processed solar cells based on environmentally friendly AgBiS2 nanocrystals , 2016, Nature Photonics.

[2]  Benoit Dubertret,et al.  Infrared Photodetection Based on Colloidal Quantum-Dot Films with High Mobility and Optical Absorption up to THz. , 2016, Nano letters.

[3]  Nicholas A. Kotov,et al.  Layer-by-Layer Assembled Films of HgTe Nanocrystals with Strong Infrared Emission , 2000 .

[4]  T. Mihaljevic,et al.  Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping , 2004, Nature Biotechnology.

[5]  Edward H. Sargent,et al.  Sensitive solution-processed visible-wavelength photodetectors , 2007 .

[6]  Andras Kis,et al.  Ultrasensitive photodetectors based on monolayer MoS2. , 2013, Nature nanotechnology.

[7]  G. Konstantatos,et al.  Ultrasensitive solution-cast quantum dot photodetectors , 2006, Nature.

[8]  G. Konstantatos,et al.  Hybrid graphene-quantum dot phototransistors with ultrahigh gain. , 2011, Nature nanotechnology.

[9]  C. N. R. Rao,et al.  Near infrared detectors based on HgSe and HgCdSe quantum dots generated at the liquid–liquid interface , 2013 .

[10]  Alexander Eychmüller,et al.  Colloidally Prepared HgTe Nanocrystals with Strong Room‐Temperature Infrared Luminescence , 1999 .

[11]  A. Rogalski Infrared detectors: an overview , 2002 .

[12]  Gerasimos Konstantatos,et al.  Highly Sensitive, Encapsulated MoS2 Photodetector with Gate Controllable Gain and Speed. , 2015, Nano letters.

[13]  Philippe Guyot-Sionnest,et al.  Mercury telluride colloidal quantum dots: electronic structure, size-dependent spectra, and photocurrent detection up to 12 μm. , 2014, ACS nano.

[14]  Philippe Guyot-Sionnest,et al.  Mid‐Infrared HgTe/As2S3 Field Effect Transistors and Photodetectors , 2013, Advanced materials.

[15]  Tania Lasanta,et al.  Interface Engineering in Hybrid Quantum Dot–2D Phototransistors , 2016 .

[16]  Stefan Gamerith,et al.  Inkjet‐Printed Nanocrystal Photodetectors Operating up to 3 μm Wavelengths , 2007 .

[17]  Ratan Debnath,et al.  Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics , 2011, Advanced materials.

[18]  Frank H. L. Koppens,et al.  Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor , 2016, Nature Communications.

[19]  A. Rogalski,et al.  Third-generation infrared photodetector arrays , 2009 .

[20]  Jan-Erik Källhammer Imaging: The road ahead for car night-vision , 2006 .

[21]  P. Guyot-Sionnest,et al.  Background limited mid-infrared photodetection with photovoltaic HgTe colloidal quantum dots , 2015 .

[22]  P. Guyot-Sionnest,et al.  Colloidal HgTe Material for Low-Cost Detection into the MWIR , 2012, Journal of Electronic Materials.

[23]  Alexander Eychmüller,et al.  Wet Chemical Synthesis of Highly Luminescent HgTe/CdS Core/Shell Nanocrystals** , 2000 .

[24]  G. Konstantatos,et al.  Efficient Infrared Electroluminescent Devices Using Solution‐Processed Colloidal Quantum Dots , 2005 .

[25]  G. Konstantatos,et al.  Solution-processed PbS quantum dot infrared photodetectors and photovoltaics , 2005, Nature materials.

[26]  C. Grigoropoulos,et al.  Analysis of flicker noise in two-dimensional multilayer MoS2 transistors , 2014 .

[27]  Dmitri V Talapin,et al.  PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors , 2005, Science.

[28]  Michael S. Shur,et al.  Low-frequency 1 / f noise in MoS 2 transistors : Relative contributions of the channel and contacts , 2014 .

[29]  Gabriele Navickaite,et al.  Hybrid 2D–0D MoS2–PbS Quantum Dot Photodetectors , 2015, Advanced materials.

[30]  Oleksandr Voznyy,et al.  Measuring charge carrier diffusion in coupled colloidal quantum dot solids. , 2013, ACS nano.

[31]  P. Guyot-Sionnest,et al.  Mid-IR Colloidal Nanocrystals , 2013 .

[32]  Philippe Guyot-Sionnest,et al.  Colloidal quantum dots intraband photodetectors. , 2014, ACS nano.

[33]  P. Guyot-Sionnest,et al.  Thermal properties of mid-infrared colloidal quantum dot detectors , 2011 .

[34]  P. Guyot-Sionnest,et al.  Intraband Luminescence from HgSe/CdS Core/Shell Quantum Dots. , 2016, ACS nano.

[35]  P. Guyot-Sionnest,et al.  Mid-infrared HgTe colloidal quantum dot photodetectors , 2011 .

[36]  Stephen V. Kershaw,et al.  Fast, Air‐Stable Infrared Photodetectors based on Spray‐Deposited Aqueous HgTe Quantum Dots , 2014 .