Amorphization phenomenon in Ni/amorphous Si multilayers

Interfacial reactions of Ni/amorphous Si( a -Si) multilayers are studied by means of transmission electron microscopy (TEM) and cross-sectional transmission electron microscopy (XTEM). Transformation from a crystalline to an amorphous structure has been observed in as-deposited Ni/ a -Si multilayers with small modulation periods. This phenomenon is suggested to be due to interdiffusion-induced solid state amorphization which is facilitated by the high density of interface in the shorter modulation period multilayers. A thermodynamic and kinetic explanation is given for this phenomenon.

[1]  H. Bai,et al.  Study of the structure of sputter-deposited Ni-Si multilayers , 1993 .

[2]  W. Wang,et al.  Interdiffusion study of amorphous Ni–Si multilayer at low temperature , 1993 .

[3]  W. K. Wang,et al.  SOLID-STATE AMORPHIZATION REACTION IN POLYCRYSTALLINE NI AND AMORPHOUS SI MULTILAYER , 1993 .

[4]  W. K. Wang,et al.  Interdiffusion of FeTi Multilayers Studied by In‐Situ X‐Ray Diffraction , 1993 .

[5]  W. K. Wang,et al.  Phase selection in interfacial reaction of Ni/amorphous Si multilayers , 1993 .

[6]  Ziemann,et al.  Multiple low-temperature interface reactions: An alternative route into the amorphous state of metallic alloys. , 1991, Physical review letters.

[7]  Sauér,et al.  Critical thickness of the amorphous-nanocrystalline transition in Gd/Fe film structures. , 1991, Physical review. B, Condensed matter.

[8]  R. Sinclair,et al.  Metastable Phase Formation in Thin Films and Multilayers , 1990 .

[9]  C. Thompson,et al.  Nucleation‐limited phase selection during reactions in nickel/amorphous‐silicon multilayer thin films , 1990 .

[10]  K. Daneshvar,et al.  Electrical resistivity and Hall effect of TiSi2 thin films in the temperature range of 2–300 K , 1989 .

[11]  M. Nathan,et al.  Amorphous silicide formation by thermal reaction: A comparison of several metal–silicon systems , 1989 .

[12]  H. Nakajima,et al.  Superconducting properties of Mo/Si multilayer films , 1989 .

[13]  S. Gong,et al.  Initial solid‐state reactions between crystalline Sb and amorphous Si thin films , 1988 .

[14]  B. Clemens Structure of early transition metal-late transition metal multilayers☆ , 1988 .

[15]  M. Nathan Solid phase reactions in free-standing layered M-Si (M= Ti, V, Cr, Co) films , 1988 .

[16]  R. Bene A kinetic model for solid-state silicide nucleation , 1987 .

[17]  Robert Sinclair,et al.  Amorphous Ti-Si alloy formed by interdiffusion of amorphous Si and crystalline Ti multilayers , 1987 .

[18]  Robert Schwarz,et al.  Formation of an Amorphous Alloy by Solid-State Reaction of the Pure Polycrystalline Metals , 1983 .

[19]  M. Grimsditch,et al.  Structural, elastic, and transport anomalies in molybdenum/nickel superlattices , 1983 .

[20]  W. F. V. D. Weg,et al.  Tungsten as a marker in thin‐film diffusion studies , 1976 .

[21]  F. Spaepen A structural model for the solid-liquid interface in monatomic systems , 1975 .

[22]  M. Nicolet,et al.  Identification of the dominant diffusing species in silicide formation , 1974 .

[23]  William L. Johnson,et al.  Thermodynamic and kinetic aspects of the crystal to glass transformation in metallic materials , 1986 .