TECHNICAL REPORT Visual Analytics: A Multi-faceted Overview

Visual Analytics (VA) is an emerging field that provides automated analysis of large and complex data sets via interactive visualization systems in an effort to facilitate fruitful decision making. VA is a collaborative process between the human and the machine. In this paper, we present a multi-faceted overview of this human-computer collaboration. The system facet contains everything about the data, analytical tasks, visualization types and the relationships between them. The user facet contains the number and properties of the users. The collaboration facet covers the interactions between the system and the users within the context o fV A.

[1]  Daniel A. Keim,et al.  Information Visualization and Visual Data Mining , 2002, IEEE Trans. Vis. Comput. Graph..

[2]  David G. Stork,et al.  Pattern Classification , 1973 .

[3]  D. F. Andrews,et al.  PLOTS OF HIGH-DIMENSIONAL DATA , 1972 .

[4]  Edward R. Tufte Visual explanations: images and quantities, evidence and narrative , 1997 .

[5]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[6]  Ethem Alpaydin,et al.  Introduction to Machine Learning (Adaptive Computation and Machine Learning) , 2004 .

[7]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[8]  Michael Friendly,et al.  A Brief History of Data Visualization , 2008 .

[9]  Eric O. Postma,et al.  Dimensionality Reduction: A Comparative Review , 2008 .

[10]  Paul S. Bradley,et al.  Mathematical Programming for Data Mining: Formulations and Challenges , 1999, INFORMS J. Comput..

[11]  Edward R. Tufte,et al.  Envisioning Information , 1990 .

[12]  Ethem Alpaydin,et al.  Introduction to machine learning , 2004, Adaptive computation and machine learning.

[13]  Colin Ware,et al.  Information Visualization: Perception for Design , 2000 .

[14]  Remco C. Veltkamp,et al.  Content Based 3D Shape Retrieval , 2006, Encyclopedia of Multimedia.

[15]  Herman Chernoff,et al.  The Use of Faces to Represent Points in k- Dimensional Space Graphically , 1973 .

[16]  John Riedl,et al.  An operator interaction framework for visualization systems , 1998, Proceedings IEEE Symposium on Information Visualization (Cat. No.98TB100258).

[17]  David S. Ebert,et al.  Using shape to visualize multivariate data , 1999, NPIVM '99.

[18]  Ed H. Chi,et al.  A taxonomy of visualization techniques using the data state reference model , 2000, IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings.

[19]  Kristin A. Cook,et al.  Illuminating the Path: The Research and Development Agenda for Visual Analytics , 2005 .

[20]  Martin Wattenberg,et al.  Artistic Data Visualization: Beyond Visual Analytics , 2007, HCI.

[21]  Matthew O. Ward,et al.  A Taxonomy of Glyph Placement Strategies for Multidimensional Data Visualization , 2002, Inf. Vis..

[22]  J. J. van Wijk The value of visualization , 2005 .

[23]  Alfred Inselberg,et al.  Parallel coordinates for visualizing multi-dimensional geometry , 1987 .

[24]  Stefan Berchtold,et al.  Similarity clustering of dimensions for an enhanced visualization of multidimensional data , 1998, Proceedings IEEE Symposium on Information Visualization (Cat. No.98TB100258).

[25]  Heidrun Schumann,et al.  Interactive Poster: Axes-Based Visualizations for Time Series Data , 2003 .

[26]  Edward R. Tufte,et al.  The Visual Display of Quantitative Information , 1986 .

[27]  Glenn Fung,et al.  Data selection for support vector machine classifiers , 2000, KDD '00.

[28]  Ricardo Vilalta,et al.  Metalearning - Applications to Data Mining , 2008, Cognitive Technologies.

[29]  Arnaud Delorme,et al.  EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis , 2004, Journal of Neuroscience Methods.

[30]  Chaomei Chen,et al.  Information Visualization: Beyond the Horizon , 2006 .

[31]  J. Morsink,et al.  The Universal Declaration of Human Rights: Origins, Drafting, and Intent , 1999 .

[32]  Stuart K. Card,et al.  Entity-based collaboration tools for intelligence analysis , 2008, 2008 IEEE Symposium on Visual Analytics Science and Technology.

[33]  Anne Treisman,et al.  Preattentive processing in vision , 1985, Computer Vision Graphics and Image Processing.

[34]  Jeffrey Heer,et al.  Design Considerations for Collaborative Visual Analytics , 2007, 2007 IEEE Symposium on Visual Analytics Science and Technology.

[35]  Tin Kam Ho,et al.  Complexity Measures of Supervised Classification Problems , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  Daniel A. Keim,et al.  Visual Analytics: Definition, Process, and Challenges , 2008, Information Visualization.

[37]  John W. Tukey,et al.  Exploratory Data Analysis. , 1979 .

[38]  I. Jolliffe Principal Component Analysis , 2002 .

[39]  Peter P. Chen The entity-relationship model: toward a unified view of data , 1975, VLDB '75.

[40]  Alfred Inselberg,et al.  Visualizing high dimensional datasets and multivariate relations (tutorial AM-2) , 2000, KDD '00.

[41]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[42]  Martin J. Eppler,et al.  Towards a periodic table of visualization methods of management , 2007 .

[43]  Aidong Zhang,et al.  Cluster analysis for gene expression data: a survey , 2004, IEEE Transactions on Knowledge and Data Engineering.

[44]  P. Fayers,et al.  The Visual Display of Quantitative Information , 1990 .

[45]  I K Fodor,et al.  A Survey of Dimension Reduction Techniques , 2002 .

[46]  Edward R. Tufte,et al.  Data Analysis for Politics and Policy , 1974 .