Medical Image Understanding and Analysis: 24th Annual Conference, MIUA 2020, Oxford, UK, July 15-17, 2020, Proceedings

In oncology, Positron Emission Tomography (PET) is frequently performed for cancer staging and treatment monitoring. Metabolic active tumor volume (MATV) as well as total MATV (TMATV including primary tumor, lymph nodes and metastasis) derived from PET images have been identified as prognostic factor or for evaluating treatment efficacy in cancer patients. To this end a segmentation approach with high precision and repeatability is important. Moreover, to derive TMATV, a reliable segmentation of the primary tumor as well as all metastasis is essential. However, the implementation of a repeatable and accurate segmentation algorithm remains a challenge. In this work, we propose an artificial intelligence based segmentation method based on textural features (TF) extracted from the PET image. From a large number of textural features, the most important features for the segmentation task were selected. The selected features are used for training a random forest classifier to identify voxels as tumor or background. The algorithm is trained, validated and tested using a lung cancer PET/CT dataset and, additionally, applied on a fully independent test-retest dataset. The approach is especially designed for accurate and repeatable segmentation of primary tumors and metastasis in order to derive TMATV. The segmentation results are compared with conventional segmentation approaches in terms of accuracy and repeatability. In summary, the TF segmentation proposed in this study provided better repeatability and accuracy than conventional segmentation approaches. Moreover, segmentations were © Springer Nature Switzerland AG 2020 B. W. Papież et al. (Eds.): MIUA 2020, CCIS 1248, pp. 3–14, 2020. https://doi.org/10.1007/978-3-030-52791-4_1 accurate for both primary tumors and metastasis and the proposed algorithm is therefore a good candidate for PET tumor segmentation.

[1]  A. Colles On the Fracture of the Carpal Extremity of the Radius , 1814, Edinburgh medical and surgical journal.

[2]  L. D. Baker,et al.  Complications of Colles' fractures. , 1946, North Carolina medical journal.

[3]  J. Kellgren,et al.  Radiological Assessment of Osteo-Arthrosis , 1957, Annals of the rheumatic diseases.

[4]  S. Ahlbäck Osteoarthrosis of the knee. A radiographic investigation. , 1968, Acta radiologica: diagnosis.

[5]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[6]  R. Bloom,et al.  Humeral cortical thickness as an index of osteoporosis in women. , 1970, The British journal of radiology.

[7]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[8]  Glen D Sullenger Color Atlas of Gonioscopy , 1975 .

[9]  Jacob Cohen,et al.  Applied multiple regression/correlation analysis for the behavioral sciences , 1979 .

[10]  F. Gilles,et al.  Gyral development of the human brain , 1977, Transactions of the American Neurological Association.

[11]  E. Stennert,et al.  [An index for paresis and defective healing--an easily applied method for objectively determining therapeutic results in facial paresis (author's transl)]. , 1977, HNO.

[12]  W. Southwell Wave-front estimation from wave-front slope measurements , 1980 .

[13]  M. E. Lefevre,et al.  Frequency of black pigment in livers and spleens of coal workers: correlation with pulmonary pathology and occupational information. , 1982, Human pathology.

[14]  Keiichi Abe,et al.  Topological structural analysis of digitized binary images by border following , 1985, Comput. Vis. Graph. Image Process..

[15]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[16]  D J Hawkes,et al.  A robust and accurate method for calculating the fractal signature of texture in macroradiographs of osteoarthritic knees. , 1991, Medical informatics = Medecine et informatique.

[17]  D. Hawkes,et al.  Analysis of texture in macroradiographs of osteoarthritic knees using the fractal signature. , 1991, Physics in medicine and biology.

[18]  W. D. Bidgood,et al.  Introduction to the ACR-NEMA DICOM standard. , 1992, Radiographics : a review publication of the Radiological Society of North America, Inc.

[19]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[20]  Yves Bizais,et al.  Registration of multimodality medical images using a region overlap criterion , 1992, CVGIP Graph. Model. Image Process..

[21]  Xuecheng Tai,et al.  A parallel splitting-up method for partial differential equations and its applications to Navier-Stokes equations , 1992 .

[22]  Paul S. Heckbert,et al.  Graphics gems IV , 1994 .

[23]  J. Nedzelski,et al.  Development of a sensitive clinical facial grading system. , 1996, European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery.

[24]  U. Wyss,et al.  Trabecular microstructure in the medial condyle of the proximal tibia of patients with knee osteoarthritis. , 1995, Bone.

[25]  Guy Marchal,et al.  Automated multi-modality image registration based on information theory , 1995 .

[26]  J. Hajnal,et al.  Detection of Subtle Brain Changes Using Subvoxel Registration and Subtraction of Serial MR Images , 1995, Journal of computer assisted tomography.

[27]  Peter Kovesi,et al.  Image Features from Phase Congruency , 1995 .

[28]  D. A. Fish,et al.  Blind deconvolution by means of the Richardson-Lucy algorithm. , 1995 .

[29]  A. V. Cideciyan,et al.  Registration of ocular fundus images: an algorithm using cross-correlation of triple invariant image descriptors , 1995 .

[30]  R. Navarro,et al.  Odd aberrations and double-pass measurements of retinal image quality. , 1995, Journal of the Optical Society of America. A, Optics, image science, and vision.

[31]  Max A. Viergever,et al.  Comparison of edge-based and ridge-based registration of CT and MR brain images , 1996, Medical Image Anal..

[32]  Paul A. Viola,et al.  Multi-modal volume registration by maximization of mutual information , 1996, Medical Image Anal..

[33]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[34]  G. Laseter,et al.  Management of distal radius fractures. , 1996, Journal of hand therapy : official journal of the American Society of Hand Therapists.

[35]  J. Arendt Paper presented at the 10th Nordic-Baltic Conference on Biomedical Imaging: Field: A Program for Simulating Ultrasound Systems , 1996 .

[36]  L. Labree,et al.  Glaucoma care and conformance with preferred practice patterns. Examination of the private, community-based ophthalmologist. , 1996, Ophthalmology.

[37]  Christophe Fiorio,et al.  Two Linear Time Union-Find Strategies for Image Processing , 1996, Theor. Comput. Sci..

[38]  Thomas Berlage,et al.  Supporting ultrasound diagnosis using an animated 3D model of the heart , 1996, Proceedings of the Third IEEE International Conference on Multimedia Computing and Systems.

[39]  Nick C. Fox,et al.  The boundary shift integral: an accurate and robust measure of cerebral volume changes from registered repeat MRI , 1997, IEEE Transactions on Medical Imaging.

[40]  Karl J. Friston,et al.  Incorporating Prior Knowledge into Image Registration , 1997, NeuroImage.

[41]  Peter Kovesi,et al.  Symmetry and Asymmetry from Local Phase , 1997 .

[42]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[43]  H H Ehricke SONOSim3D: a multimedia system for sonography simulation and education with an extensible case database. , 1998, European journal of ultrasound : official journal of the European Federation of Societies for Ultrasound in Medicine and Biology.

[44]  Daniel Cohen-Or,et al.  Real-Time Ultrasound Imaging Simulation , 1998, Real Time Imaging.

[45]  Max A. Viergever,et al.  Efficient and reliable schemes for nonlinear diffusion filtering , 1998, IEEE Trans. Image Process..

[46]  D. Vigneron,et al.  Prediction of neuromotor outcome in perinatal asphyxia: evaluation of MR scoring systems. , 1998, AJNR. American journal of neuroradiology.

[47]  Alejandro F. Frangi,et al.  Muliscale Vessel Enhancement Filtering , 1998, MICCAI.

[48]  Timothy F. Cootes,et al.  Active Appearance Models , 1998, ECCV.

[49]  Scott T. Grafton,et al.  Automated image registration: I. General methods and intrasubject, intramodality validation. , 1998, Journal of computer assisted tomography.

[50]  Alan C. Evans,et al.  A nonparametric method for automatic correction of intensity nonuniformity in MRI data , 1998, IEEE Transactions on Medical Imaging.

[51]  Nicholas Ayache,et al.  The Correlation Ratio as a New Similarity Measure for Multimodal Image Registration , 1998, MICCAI.

[52]  Tony F. Chan,et al.  Color TV: total variation methods for restoration of vector-valued images , 1998, IEEE Trans. Image Process..

[53]  Colin Studholme,et al.  An overlap invariant entropy measure of 3D medical image alignment , 1999, Pattern Recognit..

[54]  Matti Pietikäinen,et al.  Gray Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2000, ECCV.

[55]  H. Kapoor,et al.  Displaced intra-articular fractures of distal radius: a comparative evaluation of results following closed reduction, external fixation and open reduction with internal fixation. , 2000, Injury.

[56]  R. Marshall The use of classification and regression trees in clinical epidemiology. , 2001, Journal of clinical epidemiology.

[57]  Michael Felsberg,et al.  The monogenic signal , 2001, IEEE Trans. Signal Process..

[58]  J. Swedlow,et al.  A workingperson's guide to deconvolution in light microscopy. , 2001, BioTechniques.

[59]  A. Ruifrok,et al.  Quantification of histochemical staining by color deconvolution. , 2001, Analytical and quantitative cytology and histology.

[60]  M. Buchsbaum,et al.  Deformation-Based Morphometry and Its Relation to Conventional Volumetry of Brain Lateral Ventricles in MRI , 2001, NeuroImage.

[61]  Stephen M. Smith,et al.  Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm , 2001, IEEE Transactions on Medical Imaging.

[62]  C. Garel,et al.  Fetal cerebral cortex: normal gestational landmarks identified using prenatal MR imaging. , 2001, AJNR. American journal of neuroradiology.

[63]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[64]  S. Loncaric,et al.  A rule-based approach to stroke lesion analysis from CT brain images , 2001, ISPA 2001. Proceedings of the 2nd International Symposium on Image and Signal Processing and Analysis. In conjunction with 23rd International Conference on Information Technology Interfaces (IEEE Cat..

[65]  On the appearance of bile in clinical MR cholangiopancreatography. , 2002, Acta radiologica.

[66]  I. König,et al.  Predicting functional outcome and survival after acute ischemic stroke , 2002, Journal of Neurology.

[67]  M. Cerqueira,et al.  Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. , 2002, Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology.

[68]  M. Reddington,et al.  Surface imaging microscopy, an automated method for visualizing whole embryo samples in three dimensions at high resolution , 2002, Developmental dynamics : an official publication of the American Association of Anatomists.

[69]  T. Hebert,et al.  Adaptive optics scanning laser ophthalmoscopy. , 2002, Optics express.

[70]  Patrice Y. Simard,et al.  Best practices for convolutional neural networks applied to visual document analysis , 2003, Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings..

[71]  Max A. Viergever,et al.  Mutual-information-based registration of medical images: a survey , 2003, IEEE Transactions on Medical Imaging.

[72]  W. Eric L. Grimson,et al.  A shape-based approach to the segmentation of medical imagery using level sets , 2003, IEEE Transactions on Medical Imaging.

[73]  H. Genant,et al.  New radiographic-based surrogate outcome measures for osteoarthritis of the knee. , 2003, Osteoarthritis and cartilage.

[74]  Mats Ulfendahl,et al.  Image-adaptive deconvolution for three-dimensional deep biological imaging. , 2003, Biophysical journal.

[75]  Serge J. Belongie,et al.  Unsupervised Color Decomposition Of Histologically Stained Tissue Samples , 2003, NIPS.

[76]  A. Weiland,et al.  Fractures of the distal aspect of the radius: changes in treatment over the past two decades. , 2003, Instructional course lectures.

[77]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[78]  Xavier Descombes,et al.  An object-based approach for detecting small brain lesions: application to Virchow-Robin spaces , 2004, IEEE Transactions on Medical Imaging.

[79]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[80]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[81]  Karen J. Ferguson,et al.  Enlarged perivascular spaces are associated with cognitive function in healthy elderly men , 2004, Journal of Neurology, Neurosurgery & Psychiatry.

[82]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[83]  A. Roorda,et al.  Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope. , 2004, Journal of biomedical optics.

[84]  J. Zerubia,et al.  3D Microscopy Deconvolution using Richardson-Lucy Algorithm with Total Variation Regularization , 2004 .

[85]  Paul A. Viola,et al.  Alignment by Maximization of Mutual Information , 1997, International Journal of Computer Vision.

[86]  C. Buckland-Wright Subchondral bone changes in hand and knee osteoarthritis detected by radiography. , 2004, Osteoarthritis and cartilage.

[87]  Luminita A. Vese,et al.  Segmentation under geometrical conditions using geodesic active contours and interpolation using level set methods , 2005, Numerical Algorithms.

[88]  Ron Kimmel,et al.  Fast Marching Methods , 2004 .

[89]  John Daugman,et al.  How iris recognition works , 2002, IEEE Transactions on Circuits and Systems for Video Technology.

[90]  Vili Podgorelec,et al.  Decision Trees: An Overview and Their Use in Medicine , 2002, Journal of Medical Systems.

[91]  Michael Brady,et al.  Phase mutual information as a similarity measure for registration , 2005, Medical Image Anal..

[92]  David Williams,et al.  Image Metrics for Predicting Subjective Image Quality , 2005, Optometry and vision science : official publication of the American Academy of Optometry.

[93]  Arie Shoshani,et al.  Optimizing connected component labeling algorithms , 2005, SPIE Medical Imaging.

[94]  Dinggang Shen,et al.  Consistent Estimation of Cardiac Motions by 4D Image Registration , 2005, MICCAI.

[95]  S. Tabrizi,et al.  Biomarkers for neurodegenerative diseases , 2005, Current opinion in neurology.

[96]  William Albert Arkhurst Ein interaktiver Atlas für die Sonographie und Anatomie des Säuglingsgehirns , 2005 .

[97]  I. Deary,et al.  Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures , 2005, Journal of anatomy.

[98]  L. Griffeth Use of Pet/Ct Scanning in Cancer Patients: Technical and Practical Considerations , 2005, Proceedings.

[99]  Hongkai Zhao,et al.  A fast sweeping method for Eikonal equations , 2004, Math. Comput..

[100]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[101]  Paul F. Whelan,et al.  Analysis of the pancreato-biliary system from MRCP , 2005, 18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05).

[102]  N. Surgery [Facial nerve grading system]. , 2006, Zhonghua er bi yan hou tou jing wai ke za zhi = Chinese journal of otorhinolaryngology head and neck surgery.

[103]  Guido Gerig,et al.  User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability , 2006, NeuroImage.

[104]  Eldad Haber,et al.  Intensity Gradient Based Registration and Fusion of Multi-modal Images , 2006, MICCAI.

[105]  Mila Nikolova,et al.  Algorithms for Finding Global Minimizers of Image Segmentation and Denoising Models , 2006, SIAM J. Appl. Math..

[106]  A. Roorda,et al.  MEMS-based adaptive optics scanning laser ophthalmoscopy. , 2006, Optics letters.

[107]  R. D. Ferguson,et al.  Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging. , 2006, Optics express.

[108]  J. Alison Noble,et al.  Ultrasound image segmentation: a survey , 2006, IEEE Transactions on Medical Imaging.

[109]  John G. Csernansky,et al.  Open Access Series of Imaging Studies (OASIS): Cross-sectional MRI Data in Young, Middle Aged, Nondemented, and Demented Older Adults , 2007, Journal of Cognitive Neuroscience.

[110]  Emmanuel Roux,et al.  Linking clinical measurements and kinematic gait patterns of toe-walking using fuzzy decision trees. , 2007, Gait & posture.

[111]  Nassir Navab,et al.  Three-Dimensional Ultrasound Mosaicing , 2007, MICCAI.

[112]  Victor Couture,et al.  Appendix for online publication , 2007 .

[113]  Jeff Orchard Globally Optimal Multimodal Rigid Registration: An Analytic Solution using Edge Information , 2007, 2007 IEEE International Conference on Image Processing.

[114]  P. Visscher,et al.  The Lothian Birth Cohort 1936: a study to examine influences on cognitive ageing from age 11 to age 70 and beyond , 2007, BMC geriatrics.

[115]  Anthony Yezzi,et al.  Hybrid geodesic region-based curve evolutions for image segmentation , 2007, SPIE Medical Imaging.

[116]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .

[117]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[118]  I. Timor-Tritsch,et al.  Sonographic examination of the fetal central nervous system: guidelines for performing the ‘basic examination’ and the ‘fetal neurosonogram’ , 2007, Ultrasound in obstetrics & gynecology : the official journal of the International Society of Ultrasound in Obstetrics and Gynecology.

[119]  Reinhard Männer,et al.  Real-time simulator for intravascular ultrasound (IVUS) , 2007, SPIE Medical Imaging.

[120]  M. van Buchem,et al.  Hypoxic-ischemic encephalopathy: diagnostic value of conventional MR imaging pulse sequences in term-born neonates. , 2008, Radiology.

[121]  J. Wardlaw,et al.  Retinal microvascular abnormalities and stroke: a systematic review , 2008, Journal of Neurology, Neurosurgery, and Psychiatry.

[122]  Bo Sun,et al.  Medical Student Evaluation using Virtual Pathology Echocardiography (VPE) for Augmented Standardized Patients , 2008, MMVR.

[123]  Jens Frahm,et al.  Suppression of MRI Truncation Artifacts Using Total Variation Constrained Data Extrapolation , 2008, Int. J. Biomed. Imaging.

[124]  Kashif Rajpoot,et al.  Feature detection from echocardiography images using local phase information , 2008 .

[125]  J. Finsterer Management of peripheral facial nerve palsy , 2008, European Archives of Oto-Rhino-Laryngology.

[126]  F. Lazeyras,et al.  Mapping the early cortical folding process in the preterm newborn brain. , 2008, Cerebral cortex.

[127]  Jean Stawiaski,et al.  Interactive Liver Tumor Segmentation Using Graph-cuts and Watershed , 2008, The MIDAS Journal.

[128]  A. Obenaus,et al.  Magnetic resonance imaging in cerebral ischemia: Focus on neonates , 2008, Neuropharmacology.

[129]  T. Chan,et al.  Fast dual minimization of the vectorial total variation norm and applications to color image processing , 2008 .

[130]  Brian B. Avants,et al.  Structural consequences of diffuse traumatic brain injury: A large deformation tensor-based morphometry study , 2008, NeuroImage.

[131]  Martin Möckel,et al.  Logistic regression and CART in the analysis of multimarker studies. , 2008, Clinica chimica acta; international journal of clinical chemistry.

[132]  Nassir Navab,et al.  Real-Time Simulation of Medical Ultrasound from CT Images , 2008, MICCAI.

[133]  Nick C Fox,et al.  The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods , 2008, Journal of magnetic resonance imaging : JMRI.

[134]  H. Peitgen,et al.  Segmentation of Liver Metastases in CT Scans by Adaptive Thresholding and Morphological Processing , 2008, The MIDAS Journal.

[135]  Jürgen Hesser,et al.  Simulation of Dynamic Ultrasound Based on CT Models for Medical Education , 2008, MMVR.

[136]  R. Lindley Retinal Microvascular Signs: A Key to Understanding the Underlying Pathophysiology of Different Stroke Subtypes? , 2008, International journal of stroke : official journal of the International Stroke Society.

[137]  Allen R. Tannenbaum,et al.  Localizing Region-Based Active Contours , 2008, IEEE Transactions on Image Processing.

[138]  G. Egan,et al.  Magnetic resonance imaging as an approach towards identifying neuropathological biomarkers for Huntington's disease , 2008, Brain Research Reviews.

[139]  A. Shimizu,et al.  Ensemble segmentation using AdaBoost with application to liver lesion extraction from a CT volume , 2008, The MIDAS Journal.

[140]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[141]  Davis E. King,et al.  Dlib-ml: A Machine Learning Toolkit , 2009, J. Mach. Learn. Res..

[142]  A. Arboix Retinal microvasculature in acute lacunar stroke , 2009, The Lancet Neurology.

[143]  L. Schwartz,et al.  New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). , 2009, European journal of cancer.

[144]  S. Goldring Role of bone in osteoarthritis pathogenesis. , 2009, The Medical clinics of North America.

[145]  A. Guermazi,et al.  Plain radiography and magnetic resonance imaging diagnostics in osteoarthritis: validated staging and scoring. , 2009, The Journal of bone and joint surgery. American volume.

[146]  Michael S. Beauchamp,et al.  A new method for improving functional-to-structural MRI alignment using local Pearson correlation , 2009, NeuroImage.

[147]  R. Castillo,et al.  A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets , 2009, Physics in medicine and biology.

[148]  J. Sivaswamy,et al.  A method for automatic detection and classification of stroke from brain CT images , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[149]  Huan Yu,et al.  Coregistered FDG PET/CT-Based Textural Characterization of Head and Neck Cancer for Radiation Treatment Planning , 2009, IEEE Transactions on Medical Imaging.

[150]  Bruce Fischl,et al.  Accurate and robust brain image alignment using boundary-based registration , 2009, NeuroImage.

[151]  I. Poon,et al.  Automated radiation targeting in head-and-neck cancer using region-based texture analysis of PET and CT images. , 2009, International journal of radiation oncology, biology, physics.

[152]  Michal Strzelecki,et al.  MaZda - A software package for image texture analysis , 2009, Comput. Methods Programs Biomed..

[153]  Kashif Rajpoot,et al.  Local-phase based 3D boundary detection using monogenic signal and its application to real-time 3-D echocardiography images , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[154]  Ke Chen,et al.  Image selective segmentation under geometrical constraints using an active contour approach , 2009 .

[155]  M. Nevitt,et al.  Location specific radiographic joint space width for osteoarthritis progression. , 2009, Osteoarthritis and cartilage.

[156]  M. Gschwentner,et al.  A Comparative Study of Clinical and Radiologic Outcomes of Unstable Colles Type Distal Radius Fractures in Patients Older Than 70 Years: Nonoperative Treatment Versus Volar Locking Plating , 2009, Journal of orthopaedic trauma.

[157]  J. S. Marron,et al.  A method for normalizing histology slides for quantitative analysis , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[158]  David L. Wilson,et al.  Removal of Out-of-Plane Fluorescence for Single Cell Visualization and Quantification in Cryo-Imaging , 2009, Annals of Biomedical Engineering.

[159]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.

[160]  Jeff Orchard,et al.  Registering a MultiSensor Ensemble of Images , 2010, IEEE Transactions on Image Processing.

[161]  David L. Wilson,et al.  Removal of subsurface fluorescence in cryo-imaging using deconvolution , 2010, Optics express.

[162]  Daniel Rueckert,et al.  LEAP: Learning embeddings for atlas propagation , 2010, NeuroImage.

[163]  Xue-Cheng Tai,et al.  Augmented Lagrangian Method, Dual Methods, and Split Bregman Iteration for ROF, Vectorial TV, and High Order Models , 2010, SIAM J. Imaging Sci..

[164]  Magnus Borga,et al.  Blood vessel segmentation using multi-scale quadrature filtering , 2010, Pattern Recognit. Lett..

[165]  Karen J. Ferguson,et al.  New multispectral MRI data fusion technique for white matter lesion segmentation: method and comparison with thresholding in FLAIR images , 2010, European Radiology.

[166]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[167]  Andriy Myronenko,et al.  Intensity-Based Image Registration by Minimizing Residual Complexity , 2010, IEEE Transactions on Medical Imaging.

[168]  C. Sudlow,et al.  Associations of Clinical Stroke Misclassification (‘Clinical-Imaging Dissociation’) in Acute Ischemic Stroke , 2010, Cerebrovascular Diseases.

[169]  Hanchuan Peng,et al.  V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets , 2010, Nature Biotechnology.

[170]  T. Halazonetis,et al.  Genomic instability — an evolving hallmark of cancer , 2010, Nature Reviews Molecular Cell Biology.

[171]  M. Gerlinger,et al.  How Darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine , 2010, British Journal of Cancer.

[172]  A Herment,et al.  Rigid registration of Delayed-Enhancement and Cine Cardiac MR images using 3D Normalized Mutual Information , 2010, 2010 Computing in Cardiology.

[173]  Pascal Vincent,et al.  Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion , 2010, J. Mach. Learn. Res..

[174]  C. Studholme,et al.  3D global and regional patterns of human fetal subplate growth determined in utero , 2010, Brain Structure and Function.

[175]  R. Altman Early management of osteoarthritis. , 2010, The American journal of managed care.

[176]  Abdul Rahman Ramli,et al.  Review of brain MRI image segmentation methods , 2010, Artificial Intelligence Review.

[177]  Tien Yin Wong,et al.  Closed angle glaucoma detection in RetCam images , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[178]  T. MacGillivray,et al.  Retinal arteriolar geometry is associated with cerebral white matter hyperintensities on magnetic resonance imaging , 2010, International journal of stroke : official journal of the International Stroke Society.

[179]  Julia A. Scott,et al.  Local Tissue Growth Patterns Underlying Normal Fetal Human Brain Gyrification Quantified In Utero , 2011, The Journal of Neuroscience.

[180]  Single- and multimode characteristics of the foveal cones: the super-Gaussian function , 2011 .

[181]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[182]  Pascal Vincent,et al.  Contractive Auto-Encoders: Explicit Invariance During Feature Extraction , 2011, ICML.

[183]  S. Bierma-Zeinstra,et al.  Variation in joint shape of osteoarthritic knees. , 2011, Arthritis and rheumatism.

[184]  Claire M. Brown,et al.  Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control , 2011, Nature Protocols.

[185]  David Williams,et al.  Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope , 2011, Biomedical optics express.

[186]  F. Berenbaum,et al.  Osteoarthritis: an update with relevance for clinical practice , 2011, The Lancet.

[187]  I. Deary,et al.  Brain Aging, Cognition in Youth and Old Age and Vascular Disease in the Lothian Birth Cohort 1936: Rationale, Design and Methodology of the Imaging Protocol* , 2011, International journal of stroke : official journal of the International Stroke Society.

[188]  Julian Francis Miller,et al.  Medical Applications of Cartesian Genetic Programming , 2011, Cartesian Genetic Programming.

[189]  B. Heidari Knee osteoarthritis prevalence, risk factors, pathogenesis and features: Part I. , 2011, Caspian journal of internal medicine.

[190]  C. Seiler,et al.  Open reduction and internal fixation versus casting for highly comminuted and intra-articular fractures of the distal radius (ORCHID): protocol for a randomized clinical multi-center trial , 2011, Trials.

[191]  Karl J. Friston,et al.  Diffeomorphic registration using geodesic shooting and Gauss–Newton optimisation , 2011, NeuroImage.

[192]  Dong Wei,et al.  Myocardial Segmentation of Late Gadolinium Enhanced MR Images by Propagation of Contours from Cine MR Images , 2011, MICCAI.

[193]  J. Macdermid,et al.  Open reduction internal fixation versus percutaneous pinning with external fixation of distal radius fractures: a prospective, randomized clinical trial. , 2011, The Journal of hand surgery.

[194]  Alan C. Evans,et al.  Quantitative in vivo MRI measurement of cortical development in the fetus , 2011, Brain Structure and Function.

[195]  John T Elliott,et al.  Comparison of segmentation algorithms for fluorescence microscopy images of cells , 2011, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[196]  Stefan Klöppel,et al.  Multivariate models of inter-subject anatomical variability , 2011, NeuroImage.

[197]  Anant Madabhushi,et al.  Multifeature Landmark-Free Active Appearance Models: Application to Prostate MRI Segmentation , 2012, IEEE Transactions on Medical Imaging.

[198]  Ben Glocker,et al.  Automatic Localization and Identification of Vertebrae in Arbitrary Field-of-View CT Scans , 2012, MICCAI.

[199]  A. Evans,et al.  Normative fetal brain growth by quantitative in vivo magnetic resonance imaging. , 2012, American journal of obstetrics and gynecology.

[200]  S. Reeder,et al.  Proton density fat‐fraction: A standardized mr‐based biomarker of tissue fat concentration , 2012, Journal of magnetic resonance imaging : JMRI.

[201]  Bunyarit Uyyanonvara,et al.  Blood vessel segmentation methodologies in retinal images - A survey , 2012, Comput. Methods Programs Biomed..

[202]  S. Allassonnière,et al.  Medical image analysis methods in MR/CT-imaged acute-subacute ischemic stroke lesion: Segmentation, prediction and insights into dynamic evolution simulation models. A critical appraisal , 2012, NeuroImage: Clinical.

[203]  Patrick Clarysse,et al.  Automated segmentation of a motion mask to preserve sliding motion in deformable registration of thoracic CT. , 2012, Medical physics.

[204]  Alejandro F. Frangi,et al.  Temporal diffeomorphic free-form deformation: Application to motion and strain estimation from 3D echocardiography , 2012, Medical Image Anal..

[205]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[206]  Bostjan Likar,et al.  Groupwise Registration of Multimodal Images by an Efficient Joint Entropy Minimization Scheme , 2012, IEEE Transactions on Image Processing.

[207]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[208]  Ferréol Soulez,et al.  Blind deconvolution of 3D data in wide field fluorescence microscopy , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[209]  Josien P. W. Pluim,et al.  Patient Specific Prostate Segmentation in 3-D Magnetic Resonance Images , 2012, IEEE Transactions on Medical Imaging.

[210]  Geoffrey D. Hugo,et al.  Advances in 4D radiation therapy for managing respiration: part II - 4D treatment planning. , 2012, Zeitschrift fur medizinische Physik.

[211]  Toco Y P Chui,et al.  The use of forward scatter to improve retinal vascular imaging with an adaptive optics scanning laser ophthalmoscope , 2012, Biomedical optics express.

[212]  Hanchuan Peng,et al.  APP2: automatic tracing of 3D neuron morphology based on hierarchical pruning of a gray-weighted image distance-tree , 2013, Bioinform..

[213]  A. Dubra,et al.  In vivo dark-field imaging of the retinal pigment epithelium cell mosaic. , 2013, Biomedical optics express.

[214]  Stefanos Zafeiriou,et al.  300 Faces in-the-Wild Challenge: The First Facial Landmark Localization Challenge , 2013, 2013 IEEE International Conference on Computer Vision Workshops.

[215]  P. Donnan,et al.  Impact of clinical trial findings on Bell's palsy management in general practice in the UK 2001–2012: interrupted time series regression analysis , 2013, BMJ Open.

[216]  L. Beenen,et al.  Automated Cerebral Infarct Volume Measurement in Follow-up Noncontrast CT Scans of Patients with Acute Ischemic Stroke , 2013, American Journal of Neuroradiology.

[217]  T. B. Kirk,et al.  Microstructural analysis of collagen and elastin fibres in the kangaroo articular cartilage reveals a structural divergence depending on its local mechanical environment. , 2013, Osteoarthritis and cartilage.

[218]  Shaoqun Zeng,et al.  Rapid Reconstruction of 3D Neuronal Morphology from Light Microscopy Images with Augmented Rayburst Sampling , 2013, PloS one.

[219]  M. Dichgans,et al.  Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging , 2013, The Lancet Neurology.

[220]  Y. Ung,et al.  Automatic Segmentation of Lung Carcinoma Using 3D Texture Features in 18-FDG PET/CT , 2013, International journal of molecular imaging.

[221]  Antonio Criminisi,et al.  Decision Forests for Computer Vision and Medical Image Analysis , 2013, Advances in Computer Vision and Pattern Recognition.

[222]  Joakim Lindblad,et al.  Blind Color Decomposition of Histological Images , 2013, IEEE Transactions on Medical Imaging.

[223]  Andreas Rieger,et al.  A Review of Computer-Based Simulators for Ultrasound Training , 2013, Simulation in healthcare : journal of the Society for Simulation in Healthcare.

[224]  I. Deary,et al.  Towards the automatic computational assessment of enlarged perivascular spaces on brain magnetic resonance images: A systematic review , 2013, Journal of magnetic resonance imaging : JMRI.

[225]  D. Tegolo,et al.  Novel VAMPIRE algorithms for quantitative analysis of the retinal vasculature , 2013, 2013 ISSNIP Biosignals and Biorobotics Conference: Biosignals and Robotics for Better and Safer Living (BRC).

[226]  Timothy F. Cootes,et al.  Fully Automatic Segmentation of the Proximal Femur Using Random Forest Regression Voting , 2013, IEEE Transactions on Medical Imaging.

[227]  N. De Stefano,et al.  Clinical use of brain volumetry , 2013, Journal of magnetic resonance imaging : JMRI.

[228]  Dinesh Kumar,et al.  Validating retinal fundus image analysis algorithms: issues and a proposal. , 2013, Investigative ophthalmology & visual science.

[229]  M Unser,et al.  3‐D PSF fitting for fluorescence microscopy: implementation and localization application , 2013, Journal of microscopy.

[230]  Joachim Denzler,et al.  Efficient Measuring of Facial Action Unit Activation Intensities using Active Appearance Models , 2013, MVA.

[231]  Lavdie Rada,et al.  Improved Selective Segmentation Model Using One Level-Set , 2013 .

[232]  Ayse Betül Oktay,et al.  Simultaneous Localization of Lumbar Vertebrae and Intervertebral Discs With SVM-Based MRF , 2013, IEEE Transactions on Biomedical Engineering.

[233]  Thomas Guerrero,et al.  A reference dataset for deformable image registration spatial accuracy evaluation using the COPDgene study archive , 2013, Physics in medicine and biology.

[234]  Bir Bhanu,et al.  Automated detection of brain abnormalities in neonatal hypoxia ischemic injury from MR images , 2014, Medical Image Anal..

[235]  Samuel Kadoury,et al.  Metastatic Liver Tumor Segmentation Using Texture-Based Omni-Directional Deformable Surface Models , 2014, ABDI@MICCAI.

[236]  Christopher Nimsky,et al.  Robust Detection and Segmentation for Diagnosis of Vertebral Diseases Using Routine MR Images , 2014, Comput. Graph. Forum.

[237]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[238]  Trevor Darrell,et al.  Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[239]  Hester F. Lingsma,et al.  MR CLEAN, a multicenter randomized clinical trial of endovascular treatment for acute ischemic stroke in the Netherlands: study protocol for a randomized controlled trial , 2014, Trials.

[240]  T. Wong,et al.  Microvascular network alterations in retina of subjects with cerebral small vessel disease , 2014, Neuroscience Letters.

[241]  Imaging in stroke and vascular disease—part 1: ischaemic stroke , 2014, Practical Neurology.

[242]  R. Hevner,et al.  Growth and folding of the mammalian cerebral cortex: from molecules to malformations , 2014, Nature Reviews Neuroscience.

[243]  Hanchuan Peng,et al.  Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis , 2014, Nature Communications.

[244]  H. Asadi,et al.  Machine Learning for Outcome Prediction of Acute Ischemic Stroke Post Intra-Arterial Therapy , 2014, PloS one.

[245]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[246]  Luis Álvarez,et al.  A Morphological Approach to Curvature-Based Evolution of Curves and Surfaces , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[247]  P. Danwanichakul,et al.  Two-Dimensional Simulation of Electrospun Nanofibrous Structures: Connection of Experimental and Simulated Results , 2014 .

[248]  J. Arokoski,et al.  Quantification of differences in bone texture from plain radiographs in knees with and without osteoarthritis. , 2014, Osteoarthritis and cartilage.

[249]  R. Sihota,et al.  Comparative evaluation of RetCam vs. gonioscopy images in congenital glaucoma , 2014, Indian Journal of Ophthalmology.

[250]  T. Huisman,et al.  Susceptibility‐weighted imaging in pediatric neuroimaging , 2014, Journal of magnetic resonance imaging : JMRI.

[251]  Junzhou Huang,et al.  Fast multi-contrast MRI reconstruction. , 2014, Magnetic resonance imaging.

[252]  Jelena Kovacevic,et al.  Algorithm and benchmark dataset for stain separation in histology images , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[253]  D. Altman,et al.  International standards for fetal growth based on serial ultrasound measurements: the Fetal Growth Longitudinal Study of the INTERGROWTH-21st Project , 2014, The Lancet.

[254]  João Manuel R S Tavares,et al.  Medical image registration: a review , 2014, Computer methods in biomechanics and biomedical engineering.

[255]  D. Rueckert,et al.  Prediction of stroke thrombolysis outcome using CT brain machine learning , 2014, NeuroImage: Clinical.

[256]  Heinz Handels,et al.  Ischemic stroke lesion segmentation in multi-spectral MR images with support vector machine classifiers , 2014, Medical Imaging.

[257]  Christopher S. Langlo,et al.  In vivo imaging of human cone photoreceptor inner segments. , 2014, Investigative ophthalmology & visual science.

[258]  Trevor Darrell,et al.  DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition , 2013, ICML.

[259]  Yaozong Gao,et al.  Deformable segmentation of 3D MR prostate images via distributed discriminative dictionary and ensemble learning. , 2014, Medical physics.

[260]  Hanchuan Peng,et al.  Extensible visualization and analysis for multidimensional images using Vaa3D , 2014, Nature Protocols.

[261]  Florian Jung,et al.  Evaluation of prostate segmentation algorithms for MRI: The PROMISE12 challenge , 2014, Medical Image Anal..

[262]  Andrew Zisserman,et al.  Vertebrae Detection and Labelling in Lumbar MR Images , 2014 .

[263]  Josephine Sullivan,et al.  One millisecond face alignment with an ensemble of regression trees , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[264]  B. Vohnsen Directional sensitivity of the retina: A layered scattering model of outer-segment photoreceptor pigments. , 2014, Biomedical optics express.

[265]  Hung-Ming Wang,et al.  Development and Evaluation of an Open-Source Software Package “CGITA” for Quantifying Tumor Heterogeneity with Molecular Images , 2014, BioMed research international.

[266]  T. Wong,et al.  Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. , 2014, Ophthalmology.

[267]  Jack A. Spencer,et al.  A CONVEX AND SELECTIVE VARIATIONAL MODEL FOR IMAGE SEGMENTATION , 2015 .

[268]  Andrew Zisserman,et al.  Deep Face Recognition , 2015, BMVC.

[269]  Victor S. Lempitsky,et al.  Unsupervised Domain Adaptation by Backpropagation , 2014, ICML.

[270]  C. Hilgetag,et al.  Multiclass Support Vector Machine-Based Lesion Mapping Predicts Functional Outcome in Ischemic Stroke Patients , 2015, PloS one.

[271]  Subhransu Maji,et al.  Bilinear CNN Models for Fine-Grained Visual Recognition , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[272]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[273]  Shuicheng Yan,et al.  Automatic Feature Learning for Glaucoma Detection Based on Deep Learning , 2015, MICCAI.

[274]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[275]  Charles Hadlock,et al.  Clinician-Graded Electronic Facial Paralysis Assessment: The eFACE , 2015, Plastic and reconstructive surgery.

[276]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[277]  Andrew Zisserman,et al.  Automatic Intervertebral Discs Localization and Segmentation: A Vertebral Approach , 2015, CSI@MICCAI.

[278]  Jesper Carl,et al.  The use of atlas registration and graph cuts for prostate segmentation in magnetic resonance images. , 2015, Medical physics.

[279]  Purang Abolmaesumi,et al.  Fast Automatic Vertebrae Detection and Localization in Pathological CT Scans - A Deep Learning Approach , 2015, MICCAI.

[280]  Ross B. Girshick,et al.  Fast R-CNN , 2015, 1504.08083.

[281]  Trevor Darrell,et al.  Simultaneous Deep Transfer Across Domains and Tasks , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[282]  J. Wardlaw,et al.  Cerebral Perivascular Spaces Visible on Magnetic Resonance Imaging: Development of a Qualitative Rating Scale and its Observer Reliability , 2015, Cerebrovascular Diseases.

[283]  Zhiqiang Tian,et al.  A fully automatic multi-atlas based segmentation method for prostate MR images , 2015, Medical Imaging.

[284]  H. Kokkonen,et al.  Correlation of Subchondral Bone Density and Structure from Plain Radiographs with Micro Computed Tomography Ex Vivo , 2015, Annals of Biomedical Engineering.

[285]  M. Pensak,et al.  Correlation between distal radial cortical thickness and bone mineral density. , 2015, The Journal of hand surgery.

[286]  Hester F. Lingsma,et al.  A randomized trial of intraarterial treatment for acute ischemic stroke. , 2015, The New England journal of medicine.

[287]  Jakob Nikolas Kather,et al.  New Colors for Histology: Optimized Bivariate Color Maps Increase Perceptual Contrast in Histological Images , 2015, PloS one.

[288]  Hao Chen,et al.  Automatic Localization and Identification of Vertebrae in Spine CT via a Joint Learning Model with Deep Neural Networks , 2015, MICCAI.

[289]  Bolei Zhou,et al.  Object Detectors Emerge in Deep Scene CNNs , 2014, ICLR.

[290]  Bjoern H. Menze,et al.  Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries , 2015, Lecture Notes in Computer Science.

[291]  Nancy Gupta,et al.  Brain Ischemic Stroke Segmentation : A Survey , 2015 .

[292]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[293]  C. Sudlow,et al.  Enlarged perivascular spaces and cerebral small vessel disease , 2013, International journal of stroke : official journal of the International Stroke Society.

[294]  G. Striedter,et al.  Cortical folding: when, where, how, and why? , 2015, Annual review of neuroscience.

[295]  P. Elliott,et al.  UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age , 2015, PLoS medicine.

[296]  Thomas Brox,et al.  FlowNet: Learning Optical Flow with Convolutional Networks , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[297]  Manal Abdel Wahed,et al.  Quantifying facial paralysis using the kinect v2 , 2015, 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[298]  C. Stasolla,et al.  Plant Microtechniques and Protocols , 2015, Springer International Publishing.

[299]  Jian Sun,et al.  Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[300]  Nasir M. Rajpoot,et al.  Multi-class stain separation using independent component analysis , 2015, Medical Imaging.

[301]  Timothy F. Cootes,et al.  Automated Shape and Texture Analysis for Detection of Osteoarthritis from Radiographs of the Knee , 2015, MICCAI.

[302]  A. Gaber,et al.  Automated grading of facial paralysis using the Kinect v2: A proof of concept study , 2015, 2015 International Conference on Virtual Rehabilitation (ICVR).

[303]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[304]  Salvatore Vitabile,et al.  An ontology-based retrieval system for mammographic reports , 2015, 2015 IEEE Symposium on Computers and Communication (ISCC).

[305]  Marcel Simon,et al.  Neural Activation Constellations: Unsupervised Part Model Discovery with Convolutional Networks , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[306]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[307]  T. Meckel,et al.  A Model based Survey of Colour Deconvolution in Diagnostic Brightfield Microscopy: Error Estimation and Spectral Consideration , 2015, Scientific Reports.

[308]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[309]  B. Wintersperger,et al.  Late gadolinium enhancement imaging in assessment of myocardial viability: techniques and clinical applications. , 2015, Radiologic clinics of North America.

[310]  F. Barkhof,et al.  Long-term motor and behavioral outcome after perinatal hypoxic-ischemic encephalopathy. , 2015, European journal of paediatric neurology : EJPN : official journal of the European Paediatric Neurology Society.

[311]  Roy Taylor,et al.  Altered Volume, Morphology and Composition of the Pancreas in Type 2 Diabetes , 2015, PloS one.

[312]  Dit-Yan Yeung,et al.  Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting , 2015, NIPS.

[313]  Andrew Zisserman,et al.  Spatial Transformer Networks , 2015, NIPS.

[314]  Rachid Jennane,et al.  ROI impact on the characterization of knee osteoarthritis using fractal analysis , 2015, 2015 International Conference on Image Processing Theory, Tools and Applications (IPTA).

[315]  Neeraj Kumar,et al.  Empirical comparison of color normalization methods for epithelial-stromal classification in H and E images , 2016, Journal of pathology informatics.

[316]  Mariela Glandt,et al.  Non-Alcoholic Fatty Pancreatic Disease: A Review of Literature , 2016, Gastroenterology research.

[317]  Joachim Denzler,et al.  Facial Paresis Index Prediction by Exploiting Active Appearance Models for Compact Discriminative Features , 2016, VISIGRAPP.

[318]  M. Abràmoff,et al.  Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning. , 2016, Investigative ophthalmology & visual science.

[319]  François Laviolette,et al.  Domain-Adversarial Training of Neural Networks , 2015, J. Mach. Learn. Res..

[320]  A. Hofman,et al.  Retinal Microvascular Calibers Are Associated With Enlarged Perivascular Spaces in the Brain , 2016, Stroke.

[321]  Sergey Ioffe,et al.  Rethinking the Inception Architecture for Computer Vision , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[322]  Jürgen Weese,et al.  Four challenges in medical image analysis from an industrial perspective , 2016, Medical Image Anal..

[323]  A. Demchuk,et al.  Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials , 2016, The Lancet.

[324]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[325]  V. Borrell,et al.  Cerebral cortex expansion and folding: what have we learned? , 2016, The EMBO journal.

[326]  Bolei Zhou,et al.  Learning Deep Features for Discriminative Localization , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[327]  S. Kabus,et al.  The first patient treatment of computed tomography ventilation functional image-guided radiotherapy for lung cancer. , 2016, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[328]  Hiroshi Murata,et al.  Detecting Preperimetric Glaucoma with Standard Automated Perimetry Using a Deep Learning Classifier. , 2016, Ophthalmology.

[329]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[330]  Seyed-Ahmad Ahmadi,et al.  V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation , 2016, 2016 Fourth International Conference on 3D Vision (3DV).

[331]  Seyed-Ahmad Ahmadi,et al.  Automatic Liver and Lesion Segmentation in CT Using Cascaded Fully Convolutional Neural Networks and 3D Conditional Random Fields , 2016, MICCAI.

[332]  Enrico Pellegrini,et al.  Application of the Ordered Logit Model to Optimising Frangi Filter Parameters for Segmentation of Perivascular Spaces , 2016, MIUA.

[333]  Subhashini Venugopalan,et al.  Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. , 2016, JAMA.

[334]  Andrea Vedaldi,et al.  Instance Normalization: The Missing Ingredient for Fast Stylization , 2016, ArXiv.

[335]  M. Davis Glioblastoma: Overview of Disease and Treatment. , 2016, Clinical journal of oncology nursing.

[336]  Timothy F. Cootes,et al.  Fully automated shape analysis for detection of Osteoarthritis from lateral knee radiographs , 2016, 2016 23rd International Conference on Pattern Recognition (ICPR).

[337]  Thomas Brox,et al.  3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation , 2016, MICCAI.

[338]  Y. Saisho Pancreas Volume and Fat Deposition in Diabetes and Normal Physiology: Consideration of the Interplay Between Endocrine and Exocrine Pancreas. , 2016, The review of diabetic studies : RDS.

[339]  J. Lefévre,et al.  Are Developmental Trajectories of Cortical Folding Comparable Between Cross-sectional Datasets of Fetuses and Preterm Newborns? , 2016, Cerebral cortex.

[340]  Jaewoo Kang,et al.  Efficient quantitative assessment of facial paralysis using iris segmentation and active contour-based key points detection with hybrid classifier , 2016, BMC Medical Imaging.

[341]  Frans Coenen,et al.  Convolutional Neural Networks for Diabetic Retinopathy , 2016, MIUA.

[342]  Stefanos Zafeiriou,et al.  A robust similarity measure for volumetric image registration with outliers , 2016, Image Vis. Comput..

[343]  Shuo Li,et al.  Multi-modal vertebrae recognition using Transformed Deep Convolution Network , 2016, Comput. Medical Imaging Graph..

[344]  Nassir Navab,et al.  Structure-Preserving Color Normalization and Sparse Stain Separation for Histological Images , 2016, IEEE Transactions on Medical Imaging.

[345]  Ronald M. Summers,et al.  Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning , 2016, IEEE Transactions on Medical Imaging.

[346]  Xiahai Zhuang,et al.  Multivariate Mixture Model for Cardiac Segmentation from Multi-Sequence MRI , 2016, MICCAI.

[347]  C. Jantzen,et al.  Colles' fractures and osteoporosis--A new role for the Emergency Department. , 2016, Injury.

[348]  Heinz Handels,et al.  Predicting Stroke Lesion and Clinical Outcome with Random Forests , 2016, BrainLes@MICCAI.

[349]  Hao Chen,et al.  DCAN: Deep Contour-Aware Networks for Accurate Gland Segmentation , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[350]  Nasir M. Rajpoot,et al.  Stain deconvolution of histology images via independent component analysis in the wavelet domain , 2016, 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI).

[351]  Nima Tajbakhsh,et al.  Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning? , 2016, IEEE Transactions on Medical Imaging.

[352]  Vincent Dumoulin,et al.  Deconvolution and Checkerboard Artifacts , 2016 .

[353]  Steve D. M. Brown,et al.  High-throughput discovery of novel developmental phenotypes , 2017 .

[354]  Joseph Antony,et al.  Quantifying radiographic knee osteoarthritis severity using deep convolutional neural networks , 2016, 2016 23rd International Conference on Pattern Recognition (ICPR).

[355]  Zoubin Ghahramani,et al.  Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning , 2015, ICML.

[356]  T. Ragan,et al.  Whole Brain Imaging with Serial Two-Photon Tomography , 2016, Front. Neuroanat..

[357]  Joong-Ho Won,et al.  Ensemble of Deep Convolutional Neural Networks for Prognosis of Ischemic Stroke , 2016, BrainLes@MICCAI.

[358]  Christopher Rorden,et al.  Image Processing and Quality Control for the first 10,000 Brain Imaging Datasets from UK Biobank , 2017 .

[359]  C. Libert,et al.  Dual-Specificity Phosphatase 3 Deletion Protects Female, but Not Male, Mice from Endotoxemia-Induced and Polymicrobial-Induced Septic Shock , 2017, The Journal of Immunology.

[360]  E. Norwitz,et al.  Ultrasonographic Characteristics of Cortical Sulcus Development in the Human Fetus between 18 and 41 Weeks of Gestation , 2017, Chinese medical journal.

[361]  Tony Parry,et al.  Multiscale Shannon’s Entropy Modeling of Orientation and Distance in Steel Fiber Micro-Tomography Data , 2017, IEEE Transactions on Image Processing.

[362]  Nico Karssemeijer,et al.  Transfer Learning for Domain Adaptation in MRI: Application in Brain Lesion Segmentation , 2017, MICCAI.

[363]  Xiaogang Wang,et al.  Zoom-in-Net: Deep Mining Lesions for Diabetic Retinopathy Detection , 2017, MICCAI.

[364]  Yoshua Bengio,et al.  The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[365]  E. Lespessailles,et al.  Subchondral tibial bone texture predicts the incidence of radiographic knee osteoarthritis: data from the Osteoarthritis Initiative. , 2017, Osteoarthritis and cartilage.

[366]  P. J. Murray,et al.  Subchondral bone in osteoarthritis: association between MRI texture analysis and histomorphometry. , 2017, Osteoarthritis and cartilage.

[367]  Bram van Ginneken,et al.  A survey on deep learning in medical image analysis , 2017, Medical Image Anal..

[368]  Xiaoming Liu,et al.  Automatic segmentation of liver tumors from multiphase contrast-enhanced CT images based on FCNs , 2017, Artif. Intell. Medicine.

[369]  M. Hatt,et al.  Radiomics in PET/CT: More Than Meets the Eye? , 2017, The Journal of Nuclear Medicine.

[370]  Sasan Mahmoodi,et al.  Extended three-dimensional rotation invariant local binary patterns , 2017, Image Vis. Comput..

[371]  Nasir M. Rajpoot,et al.  Stain Deconvolution Using Statistical Analysis of Multi-Resolution Stain Colour Representation , 2017, PloS one.

[372]  Tobias Glasmachers,et al.  Limits of End-to-End Learning , 2017, ACML.

[373]  Giuseppe Lo Re,et al.  A Kernel Support Vector Machine Based Technique for Crohn's Disease Classification in Human Patients , 2017, CISIS.

[374]  Aneta Lisowska,et al.  Context-Aware Convolutional Neural Networks for Stroke Sign Detection in Non-contrast CT Scans , 2017, MIUA.

[375]  Yusuf Sinan Akgül,et al.  Deep learning based estimation of the eye pupil center by using image patch classification , 2017, 2017 25th Signal Processing and Communications Applications Conference (SIU).

[376]  Christopher Joseph Pal,et al.  Brain tumor segmentation with Deep Neural Networks , 2015, Medical Image Anal..

[377]  Javier Eduardo Diaz Zamboni,et al.  Estimation Methods of the Point Spread Function Axial Position: A Comparative Computational Study , 2017, J. Imaging.

[378]  Thomas J. Fuchs,et al.  Hybrid Deep Learning on Single Wide-field Optical Coherence tomography Scans Accurately Classifies Glaucoma Suspects , 2017, Journal of glaucoma.

[379]  Kilian Q. Weinberger,et al.  Densely Connected Convolutional Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[380]  Ganapathy Krishnamurthi,et al.  Semisupervised learning using denoising autoencoders for brain lesion detection and segmentation , 2016, Journal of medical imaging.

[381]  Rishab Gargeya,et al.  Automated Identification of Diabetic Retinopathy Using Deep Learning. , 2017, Ophthalmology.

[382]  K. Murphy,et al.  Automatic quantification of ischemic injury on diffusion-weighted MRI of neonatal hypoxic ischemic encephalopathy , 2017, NeuroImage: Clinical.

[383]  P. Friend,et al.  Significance of steatosis in pancreatic transplantation. , 2017, Transplantation reviews.

[384]  A. Mueller,et al.  Inpatient treatment of patients with acute idiopathic peripheral facial palsy: A population‐based healthcare research study , 2017, Clinical otolaryngology : official journal of ENT-UK ; official journal of Netherlands Society for Oto-Rhino-Laryngology & Cervico-Facial Surgery.

[385]  Hester F. Lingsma,et al.  Selection of patients for intra-arterial treatment for acute ischaemic stroke: development and validation of a clinical decision tool in two randomised trials , 2017, British Medical Journal.

[386]  Nassir Navab,et al.  ReLayNet: Retinal Layer and Fluid Segmentation of Macular Optical Coherence Tomography using Fully Convolutional Network , 2017, Biomedical optics express.

[387]  Kevin Gimpel,et al.  A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks , 2016, ICLR.

[388]  Daguang Xu,et al.  Automatic Vertebra Labeling in Large-Scale 3D CT using Deep Image-to-Image Network with Message Passing and Sparsity Regularization , 2017, IPMI.

[389]  Raymond Y. K. Lau,et al.  Least Squares Generative Adversarial Networks , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[390]  Michael C. Stevens,et al.  Adolescent maturation of the relationship between cortical gyrification and cognitive ability , 2017, NeuroImage.

[391]  S. Bauer,et al.  Fully automated stroke tissue estimation using random forest classifiers (FASTER) , 2017, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[392]  Xiao Han,et al.  Automatic Liver Lesion Segmentation Using A Deep Convolutional Neural Network Method , 2017, ArXiv.

[393]  Marc Niethammer,et al.  Quicksilver: Fast predictive image registration – A deep learning approach , 2017, NeuroImage.

[394]  G. Badger,et al.  Comparison of 2 Radiographic Techniques for Measurement of Tibiofemoral Joint Space Width , 2017, Orthopaedic journal of sports medicine.

[395]  Barbara Villarini,et al.  A Framework for Morphological Feature Extraction of Organs from MR Images for Detection and Classification of Abnormalities , 2017, 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS).

[396]  Sasan Mahmoodi,et al.  Feature Extraction and Classification to Diagnose Hypoxic-Ischemic Encephalopathy Patients by Using Susceptibility-Weighted MRI Images , 2017, MIUA.

[397]  Debjani Chakraborty,et al.  Transfer learning based classification of optical coherence tomography images with diabetic macular edema and dry age-related macular degeneration. , 2017, Biomedical optics express.

[398]  Won-Ki Jeong,et al.  Whole-brain serial-section electron microscopy in larval zebrafish , 2017, Nature.

[399]  Seyed-Ahmad Ahmadi,et al.  Hough-CNN: Deep learning for segmentation of deep brain regions in MRI and ultrasound , 2016, Comput. Vis. Image Underst..

[400]  R. Boellaard,et al.  EANM/EARL harmonization strategies in PET quantification: from daily practice to multicentre oncological studies , 2017, European Journal of Nuclear Medicine and Molecular Imaging.

[401]  et al.,et al.  ISLES 2015 ‐ A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI , 2017, Medical Image Anal..

[402]  Konstantinos Kamnitsas,et al.  Ensembles of Multiple Models and Architectures for Robust Brain Tumour Segmentation , 2017, BrainLes@MICCAI.

[403]  Michael Brady,et al.  Deep Quantitative Liver Segmentation and Vessel Exclusion to Assist in Liver Assessment , 2017, MIUA.

[404]  Michael Unser,et al.  DeconvolutionLab2: An open-source software for deconvolution microscopy. , 2017, Methods.

[405]  Roberto Cipolla,et al.  SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[406]  Christopher P. Bridge Introduction To The Monogenic Signal , 2017, ArXiv.

[407]  Christos Davatzikos,et al.  Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features , 2017, Scientific Data.

[408]  Boudewijn P. F. Lelieveldt,et al.  Nonrigid Image Registration Using Multi-scale 3D Convolutional Neural Networks , 2017, MICCAI.

[409]  Egor Krivov,et al.  MRI Augmentation via Elastic Registration for Brain Lesions Segmentation , 2017, BrainLes@MICCAI.

[410]  T. Cronberg,et al.  Hypoxic–Ischemic Encephalopathy , 2017, Seminars in Neurology.

[411]  Konstantinos Kamnitsas,et al.  Unsupervised domain adaptation in brain lesion segmentation with adversarial networks , 2016, IPMI.

[412]  Daniel Forsberg,et al.  Detection and Labeling of Vertebrae in MR Images Using Deep Learning with Clinical Annotations as Training Data , 2017, Journal of Digital Imaging.

[413]  Dean C. Barratt,et al.  Freehand Ultrasound Image Simulation with Spatially-Conditioned Generative Adversarial Networks , 2017, CMMI/RAMBO/SWITCH@MICCAI.

[414]  Klaus H. Maier-Hein,et al.  Brain Tumor Segmentation and Radiomics Survival Prediction: Contribution to the BRATS 2017 Challenge , 2017, BrainLes@MICCAI.

[415]  M. Fornage,et al.  Heart Disease and Stroke Statistics—2017 Update: A Report From the American Heart Association , 2017, Circulation.

[416]  J. Marion,et al.  Optimizing CLEM protocols for plants cells: GMA embedding and cryosections as alternatives for preservation of GFP fluorescence in Arabidopsis roots. , 2017, Journal of structural biology.

[417]  Chong Wang,et al.  Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search. , 2017, Biomedical optics express.

[418]  拓海 杉山,et al.  “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks”の学習報告 , 2017 .

[419]  T. Hackett,et al.  Imaging Collagen in Scar Tissue: Developments in Second Harmonic Generation Microscopy for Biomedical Applications , 2017, International journal of molecular sciences.

[420]  D. Stocken,et al.  Sorafenib in combination with transarterial chemoembolisation in patients with unresectable hepatocellular carcinoma (TACE 2): a randomised placebo-controlled, double-blind, phase 3 trial. , 2017, The lancet. Gastroenterology & hepatology.

[421]  Lucie Sawides,et al.  Adaptive optics retinal imaging with automatic detection of the pupil and its boundary in real time using Shack-Hartmann images. , 2017, Applied optics.

[422]  Jennifer J. Hunter,et al.  Imaging individual neurons in the retinal ganglion cell layer of the living eye , 2017, Proceedings of the National Academy of Sciences.

[423]  Joachim Denzler,et al.  [Video Instruction for Synchronous Video Recording of Mimic Movement of Patients with Facial Palsy]. , 2017, Laryngo- rhino- otologie.

[424]  U. Schmidt-Erfurth,et al.  Machine Learning of the Progression of Intermediate Age-Related Macular Degeneration Based on OCT Imaging. , 2017, Investigative ophthalmology & visual science.

[425]  Geraint Rees,et al.  Recommendations for the Use of Automated Gray Matter Segmentation Tools: Evidence from Huntington’s Disease , 2017, Front. Neurol..

[426]  J. Brenton,et al.  Unravelling tumour heterogeneity using next-generation imaging: radiomics, radiogenomics, and habitat imaging. , 2017, Clinical radiology.

[427]  B. Yılmaz,et al.  Inter- and Intraobserver Reliabilities of Four Different Radiographic Grading Scales of Osteoarthritis of the Knee Joint , 2017, The Journal of Knee Surgery.

[428]  Jose Dolz,et al.  Dense Multi-path U-Net for Ischemic Stroke Lesion Segmentation in Multiple Image Modalities , 2018, BrainLes@MICCAI.

[429]  Parashkev Nachev,et al.  Diffeomorphic brain shape modelling using Gauss-Newton optimisation , 2018, MIUA.

[430]  Mengyuan Li,et al.  Cine and Multicontrast Late Enhanced MRI Registration for 3D Heart Model Construction , 2018, STACOM@MICCAI.

[431]  S. Black,et al.  Understanding the role of the perivascular space in cerebral small vessel disease , 2018, Cardiovascular research.

[432]  Emanuele Trucco,et al.  Towards Standardization of Retinal Vascular Measurements: On the Effect of Image Centering , 2018, COMPAY/OMIA@MICCAI.

[433]  Jimmy D Bell,et al.  Reference range of liver corrected T1 values in a population at low risk for fatty liver disease—a UK Biobank sub-study, with an appendix of interesting cases , 2018, Abdominal Radiology.

[434]  Massimo Bellomi,et al.  Radiomics: the facts and the challenges of image analysis , 2018, European Radiology Experimental.

[435]  P. Lyden,et al.  Retinal Microvascular Abnormalities as Surrogate Markers of Cerebrovascular Ischemic Disease: A Meta-Analysis. , 2018, Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association.

[436]  Heather B. Roesly Thrombectomy for Stroke at 6 to 16 Hours with Selection by Perfusion Imaging , 2018, The Journal of Emergency Medicine.

[437]  Lucia Ballerini,et al.  Perivascular Spaces Segmentation in Brain MRI Using Optimal 3D Filtering , 2017, Scientific Reports.

[438]  Hans Meine,et al.  Automatic liver tumor segmentation in CT with fully convolutional neural networks and object-based postprocessing , 2018, Scientific Reports.

[439]  David Dagan Feng,et al.  Atlas registration and ensemble deep convolutional neural network-based prostate segmentation using magnetic resonance imaging , 2018, Neurocomputing.

[440]  R. Boellaard,et al.  Prognostic value of total lesion glycolysis and metabolic active tumor volume in non-small cell lung cancer. , 2017, Cancer treatment and research communications.

[441]  C. Klingner,et al.  Acute Management of Bell’s Palsy , 2018, Current Otorhinolaryngology Reports.

[442]  Ziv Yaniv,et al.  Left Ventricle Segmentation and Quantification from Cardiac Cine MR Images via Multi-task Learning , 2018, STACOM@MICCAI.

[443]  Irène Buvat,et al.  LIFEx: A Freeware for Radiomic Feature Calculation in Multimodality Imaging to Accelerate Advances in the Characterization of Tumor Heterogeneity. , 2018, Cancer research.

[444]  Joachim Denzler,et al.  Reliability of grading of facial palsy using a video tutorial with synchronous video recording , 2018, The Laryngoscope.

[445]  Giorgio Ivan Russo,et al.  Normal and Abnormal Tissue Classification in Positron Emission Tomography Oncological Studies , 2018 .

[446]  Daniel Rueckert,et al.  Joint Learning of Motion Estimation and Segmentation for Cardiac MR Image Sequences , 2018, MICCAI.

[447]  Yang Zou,et al.  Simultaneous Edge Alignment and Learning , 2018, ECCV.

[448]  Dean C. Barratt,et al.  Adversarial Deformation Regularization for Training Image Registration Neural Networks , 2018, MICCAI.

[449]  Hester F. Lingsma,et al.  Predicting Outcome of Endovascular Treatment for Acute Ischemic Stroke: Potential Value of Machine Learning Algorithms , 2018, Front. Neurol..

[450]  Stefan Klein,et al.  Intrasubject multimodal groupwise registration with the conditional template entropy , 2018, Medical Image Anal..

[451]  Jihoon G Yoon,et al.  Abstract 194: Machine Learning-Based Model Can Predict Stroke Outcome , 2018 .

[452]  R. Srikant,et al.  Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks , 2017, ICLR.

[453]  E. Neromyliotis,et al.  Paediatric gliomas: diagnosis, molecular biology and management. , 2018, Annals of translational medicine.

[454]  Sheng Xu,et al.  Adversarial Image Registration with Application for MR and TRUS Image Fusion , 2018, MLMI@MICCAI.

[455]  Meiyu Chen,et al.  Simulation of the morphological structures of electrospun membranes , 2018 .

[456]  Ben Glocker,et al.  Disease prediction using graph convolutional networks: Application to Autism Spectrum Disorder and Alzheimer's disease , 2018, Medical Image Anal..

[457]  Nikolaos Papanikolopoulos,et al.  Imperfect Segmentation Labels: How Much Do They Matter? , 2018, CVII-STENT/LABELS@MICCAI.

[458]  S. Burns,et al.  Enhanced retinal vasculature imaging with a rapidly configurable aperture. , 2018, Biomedical optics express.

[459]  Thomas M. Link,et al.  Applying Densely Connected Convolutional Neural Networks for Staging Osteoarthritis Severity from Plain Radiographs , 2018, Journal of Digital Imaging.

[460]  Christian Barillot,et al.  The first MICCAI challenge on PET tumor segmentation , 2018, Medical Image Anal..

[461]  A. Barai,et al.  Management of distal radius fractures in the emergency department: A long‐term functional outcome measure study with the Disabilities of Arm, Shoulder and Hand (DASH) scores , 2018, Emergency medicine Australasia : EMA.

[462]  Elena De Momi,et al.  Blood vessel segmentation algorithms - Review of methods, datasets and evaluation metrics , 2018, Comput. Methods Programs Biomed..

[463]  D. Sahota,et al.  Transvaginal three‐dimensional ultrasound assessment of Sylvian fissures at 18–30 weeks' gestation , 2019, Ultrasound in obstetrics & gynecology : the official journal of the International Society of Ultrasound in Obstetrics and Gynecology.

[464]  Jens Rittscher,et al.  Global probabilistic models for enhancing segmentation with convolutional networks , 2018, 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018).

[465]  René Werner,et al.  GDL-FIRE ^\text 4D : Deep Learning-Based Fast 4D CT Image Registration , 2018, MICCAI.

[466]  D. Rueckert,et al.  Structural brain imaging in Alzheimer’s disease and mild cognitive impairment: biomarker analysis and shared morphometry database , 2018, Scientific Reports.

[467]  Andrew L Beers,et al.  ISLES 2016 and 2017-Benchmarking Ischemic Stroke Lesion Outcome Prediction Based on Multispectral MRI , 2018, Front. Neurol..

[468]  A. Jemal,et al.  Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries , 2018, CA: a cancer journal for clinicians.

[469]  Klaus H. Maier-Hein,et al.  nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation , 2018, Bildverarbeitung für die Medizin.

[470]  K. W. Lai,et al.  An Overview on Image Registration Techniques for Cardiac Diagnosis and Treatment , 2018, Cardiology research and practice.

[471]  Ziv Yaniv,et al.  Cine cardiac MRI slice misalignment correction towards full 3D left ventricle segmentation , 2018, Medical Imaging.

[472]  Victor Alves,et al.  Enhancing clinical MRI Perfusion maps with data-driven maps of complementary nature for lesion outcome prediction , 2018, MICCAI.

[473]  G. Hankey,et al.  Enlarged perivascular spaces and cognitive impairment after stroke and transient ischemic attack , 2018, International journal of stroke : official journal of the International Stroke Society.

[474]  M. Lythgoe,et al.  Computational fluid dynamics with imaging of cleared tissue and of in vivo perfusion predicts drug uptake and treatment responses in tumours , 2018, Nature Biomedical Engineering.

[475]  Olaf Ronneberger,et al.  ISOODL: Instance segmentation of overlapping biological objects using deep learning , 2018, 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018).

[476]  Anjan Gudigar,et al.  Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images , 2018, Inf. Sci..

[477]  Nassir Navab,et al.  Concurrent Spatial and Channel Squeeze & Excitation in Fully Convolutional Networks , 2018, MICCAI.

[478]  J. Chiverton,et al.  Automatic diameter and orientation distribution determination of fibrous materials in micro X‐ray CT imaging data , 2018, Journal of microscopy.

[479]  Russell T. Shinohara,et al.  Harmonization of cortical thickness measurements across scanners and sites , 2017, NeuroImage.

[480]  Nima Tajbakhsh,et al.  UNet++: A Nested U-Net Architecture for Medical Image Segmentation , 2018, DLMIA/ML-CDS@MICCAI.

[481]  S. Volpi,et al.  The role of positron emission tomography in the diagnosis, staging and response assessment of non-small cell lung cancer. , 2018, Annals of translational medicine.

[482]  Chi-Wing Fu,et al.  H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor Segmentation From CT Volumes , 2018, IEEE Transactions on Medical Imaging.

[483]  Yongtian Wang,et al.  Automatic 2-D/3-D Vessel Enhancement in Multiple Modality Images Using a Weighted Symmetry Filter , 2018, IEEE Transactions on Medical Imaging.

[484]  Josien P W Pluim,et al.  Error estimation of deformable image registration of pulmonary CT scans using convolutional neural networks , 2018, Journal of medical imaging.

[485]  I. Deary,et al.  Retinal microvasculature and cerebral small vessel disease in the Lothian Birth Cohort 1936 and Mild Stroke Study , 2018, Scientific Reports.

[486]  Simo Saarakkala,et al.  Automatic Knee Osteoarthritis Diagnosis from Plain Radiographs: A Deep Learning-Based Approach , 2017, Scientific Reports.

[487]  Geraint Rees,et al.  Clinically applicable deep learning for diagnosis and referral in retinal disease , 2018, Nature Medicine.

[488]  A. Elsner,et al.  Adaptive optics imaging of the human retina , 2019, Progress in Retinal and Eye Research.

[489]  I. Deary,et al.  Towards Standardization of Quantitative Retinal Vascular Parameters: Comparison of SIVA and VAMPIRE Measurements in the Lothian Birth Cohort 1936 , 2018, Translational vision science & technology.

[490]  Ivo G. H. Jansen,et al.  Endovascular treatment for acute ischaemic stroke in routine clinical practice: prospective, observational cohort study (MR CLEAN Registry) , 2018, British Medical Journal.

[491]  Anne E Carpenter,et al.  Evaluation of Deep Learning Strategies for Nucleus Segmentation in Fluorescence Images , 2018, bioRxiv.

[492]  Kibok Lee,et al.  A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks , 2018, NeurIPS.

[493]  Andrew Zisserman,et al.  Fully‐automated alignment of 3D fetal brain ultrasound to a canonical reference space using multi‐task learning , 2018, Medical Image Anal..

[494]  J. Desilles,et al.  DWI-ASPECTS (Diffusion-Weighted Imaging–Alberta Stroke Program Early Computed Tomography Scores) and DWI-FLAIR (Diffusion-Weighted Imaging–Fluid Attenuated Inversion Recovery) Mismatch in Thrombectomy Candidates: An Intrarater and Interrater Agreement Study , 2018, Stroke.

[495]  T. Hadlock,et al.  A Machine Learning Approach for Automated Facial Measurements in Facial Palsy. , 2018, JAMA facial plastic surgery.

[496]  Michael Roberts,et al.  A Convex Geodesic Selective Model for Image Segmentation , 2018, Journal of Mathematical Imaging and Vision.

[497]  Anthony J. Yezzi,et al.  A smart and operator independent system to delineate tumours in Positron Emission Tomography scans , 2018, Comput. Biol. Medicine.

[498]  Aris Papageorghiou,et al.  Multi-channel Groupwise Registration to Construct an Ultrasound-Specific Fetal Brain Atlas , 2018, DATRA/PIPPI@MICCAI.

[499]  René Werner,et al.  Combining Good Old Random Forest and DeepLabv3+ for ISLES 2018 CT-Based Stroke Segmentation , 2018, BrainLes@MICCAI.

[500]  I. Deary,et al.  Cohort Profile Update: The Lothian Birth Cohorts of 1921 and 1936 , 2018, International journal of epidemiology.

[501]  M. He,et al.  Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fundus Photographs. , 2018, Ophthalmology.

[502]  Ben Glocker,et al.  Automated cardiovascular magnetic resonance image analysis with fully convolutional networks , 2017, Journal of Cardiovascular Magnetic Resonance.

[503]  Andrew Zisserman,et al.  Turning a Blind Eye: Explicit Removal of Biases and Variation from Deep Neural Network Embeddings , 2018, ECCV Workshops.

[504]  Hannah E. Smithson,et al.  Compact, modular and in-plane AOSLO for high-resolution retinal imaging , 2018, Biomedical optics express.

[505]  Xiaodong Wu,et al.  3D fully convolutional networks for co-segmentation of tumors on PET-CT images , 2018, 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018).

[506]  M. Nevitt,et al.  Predictive Validity of Radiographic Trabecular Bone Texture in Knee Osteoarthritis , 2017, Arthritis & rheumatology.

[507]  Florian Jug,et al.  Cell segmentation methods for label-free contrast microscopy: review and comprehensive comparison , 2019, BMC Bioinformatics.

[508]  N. Razavian,et al.  On the design of convolutional neural networks for automatic detection of Alzheimer's disease , 2019, ML4H@NeurIPS.

[509]  Xiaoming Liu,et al.  Semi-Supervised Automatic Segmentation of Layer and Fluid Region in Retinal Optical Coherence Tomography Images Using Adversarial Learning , 2019, IEEE Access.

[510]  P. Cao,et al.  Discovering knee osteoarthritis bone shape features using deep learning , 2019, Osteoarthritis and Cartilage.

[511]  Li Wang,et al.  Harmonization of Infant Cortical Thickness Using Surface-to-Surface Cycle-Consistent Adversarial Networks , 2019, MICCAI.

[512]  Nassir Navab,et al.  QuickNAT: A fully convolutional network for quick and accurate segmentation of neuroanatomy , 2018, NeuroImage.

[513]  Matthias Bethge,et al.  ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness , 2018, ICLR.

[514]  Josien P. W. Pluim,et al.  Not‐so‐supervised: A survey of semi‐supervised, multi‐instance, and transfer learning in medical image analysis , 2018, Medical Image Anal..

[515]  R. Cuocolo,et al.  Prostate MRI technical parameters standardization: A systematic review on adherence to PI-RADSv2 acquisition protocol. , 2019, European journal of radiology.

[516]  Abhishek Dutta,et al.  The VIA Annotation Software for Images, Audio and Video , 2019, ACM Multimedia.

[517]  Xiahai Zhuang,et al.  Multivariate Mixture Model for Myocardial Segmentation Combining Multi-Source Images , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[518]  Wufeng Xue,et al.  Segmentation of Multimodal Myocardial Images Using Shape-Transfer GAN , 2019, STACOM@MICCAI.

[519]  Loïc Le Folgoc,et al.  Evaluating reinforcement learning agents for anatomical landmark detection , 2019, Medical Image Anal..

[520]  Anton van den Hengel,et al.  Wider or Deeper: Revisiting the ResNet Model for Visual Recognition , 2016, Pattern Recognit..

[521]  Mert R. Sabuncu,et al.  Unsupervised Learning of Probabilistic Diffeomorphic Registration for Images and Surfaces , 2019, Medical Image Anal..

[522]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[523]  Jean A. Tkach,et al.  Differentiating pediatric autoimmune liver diseases by quantitative magnetic resonance cholangiopancreatography , 2019, Abdominal Radiology.

[524]  Ziv Yaniv,et al.  A Distance Map Regularized CNN for Cardiac Cine MR Image Segmentation , 2019, Medical physics.

[525]  G. Steidl,et al.  STRUCTURE DETECTION WITH SECOND ORDER RIESZ TRANSFORMS , 2019, Image Analysis & Stereology.

[526]  A. K. Jumaat,et al.  A Reformulated Convex and Selective Variational Image Segmentation Model and its Fast Multilevel Algorithm , 2019, Numerical Mathematics: Theory, Methods and Applications.

[527]  Simon A. A. Kohl,et al.  Automated Design of Deep Learning Methods for Biomedical Image Segmentation , 2019 .

[528]  Aaron Carass,et al.  DeepHarmony: A deep learning approach to contrast harmonization across scanner changes. , 2019, Magnetic resonance imaging.

[529]  Quoc V. Le,et al.  EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks , 2019, ICML.

[530]  Barbara Villarini,et al.  Advancing Pancreas Segmentation in Multi-protocol MRI Volumes Using Hausdorff-Sine Loss Function , 2019, MLMI@MICCAI.

[531]  Cristian A. Linte,et al.  An Adversarial Network Architecture Using 2D U-Net Models for Segmentation of Left Ventricle from Cine Cardiac MRI , 2019, FIMH.

[532]  L. Cavallo,et al.  Prediction of high proliferative index in pituitary macroadenomas using MRI-based radiomics and machine learning , 2019, Neuroradiology.

[533]  Qiang Zhou,et al.  Hepatic Lesion Segmentation by Combining Plain and Contrast-Enhanced CT Images with Modality Weighted U-Net , 2019, 2019 IEEE International Conference on Image Processing (ICIP).

[534]  Zhenwei Zhang,et al.  Radiological images and machine learning: trends, perspectives, and prospects , 2019, Comput. Biol. Medicine.

[535]  Noel E. O'Connor,et al.  Predicting knee osteoarthritis severity: comparative modeling based on patient’s data and plain X-ray images , 2019, Scientific Reports.

[536]  Ben Glocker,et al.  Image-and-Spatial Transformer Networks for Structure-Guided Image Registration , 2019, MICCAI.

[537]  Toshihiko Yamasaki,et al.  Interpreting Fine-Grained Dermatological Classification by Deep Learning , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[538]  E. Trucco,et al.  Automated detection of age-related macular degeneration in color fundus photography: a systematic review , 2019, Survey of ophthalmology.

[539]  Frederic Cervenansky,et al.  Deep Learning for Segmentation Using an Open Large-Scale Dataset in 2D Echocardiography , 2019, IEEE Transactions on Medical Imaging.

[540]  Aeilko H. Zwinderman,et al.  Data-efficient deep learning of radiological image data for outcome prediction after endovascular treatment of patients with acute ischemic stroke , 2019, Comput. Biol. Medicine.

[541]  M. Okawa,et al.  Predicting Clinical Outcomes of Large Vessel Occlusion Before Mechanical Thrombectomy Using Machine Learning. , 2019, Stroke.

[542]  Haidong Zhu,et al.  Pick-and-Learn: Automatic Quality Evaluation for Noisy-Labeled Image Segmentation , 2019, MICCAI.

[543]  Richard Zhang,et al.  Making Convolutional Networks Shift-Invariant Again , 2019, ICML.

[544]  Michael Brady,et al.  Comparison of Multi-atlas Segmentation and U-Net Approaches for Automated 3D Liver Delineation in MRI , 2019, MIUA.

[545]  D. Rueckert,et al.  Unsupervised Multi-modal Style Transfer for Cardiac MR Segmentation , 2019, STACOM@MICCAI.

[546]  Jonathan T. Barron,et al.  A General and Adaptive Robust Loss Function , 2017, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[547]  N. A. Khovanova,et al.  Decision tree and random forest models for outcome prediction in antibody incompatible kidney transplantation , 2017, Biomed. Signal Process. Control..

[548]  Yifan Peng,et al.  DeepSeeNet: A deep learning model for automated classification of patient-based age-related macular degeneration severity from color fundus photographs , 2018, Ophthalmology.

[549]  Q. Luo,et al.  High-resolution mapping of brain vasculature and its impairment in the hippocampus of Alzheimer's disease mice , 2019, National science review.

[550]  Víctor M. Campello,et al.  Combining Multi-Sequence and Synthetic Images for Improved Segmentation of Late Gadolinium Enhancement Cardiac MRI , 2019, STACOM@MICCAI.

[551]  Xavier Lladó,et al.  Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review , 2017, Artif. Intell. Medicine.

[552]  Ahmed E. Fetit,et al.  A multimodal approach to cardiovascular risk stratification in patients with type 2 diabetes incorporating retinal, genomic and clinical features , 2019, Scientific Reports.

[553]  Anthony Yezzi,et al.  K-nearest neighbor driving active contours to delineate biological tumor volumes , 2019, Eng. Appl. Artif. Intell..

[554]  Jing Yuan,et al.  Review of micro-optical sectioning tomography (MOST): technology and applications for whole-brain optical imaging [Invited]. , 2019, Biomedical optics express.

[555]  Sanja Fidler,et al.  Devil Is in the Edges: Learning Semantic Boundaries From Noisy Annotations , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[556]  R. Aspden,et al.  Osteoarthritis as an organ disease: from the cradle to the grave. , 2019, European cells & materials.

[557]  Klaus H. Maier-Hein,et al.  Abstract: nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation , 2019, Bildverarbeitung für die Medizin.

[558]  Albert Comelli,et al.  A Fully Automated Segmentation System of Positron Emission Tomography Studies , 2019, MIUA.

[559]  Ke Chen,et al.  Edge Enhancement for Image Segmentation Using a RKHS Method , 2019, MIUA.

[560]  Luke Oakden-Rayner,et al.  Deep Learning in the Prediction of Ischaemic Stroke Thrombolysis Functional Outcomes: A Pilot Study. , 2020, Academic radiology.

[561]  Nuno Vasconcelos,et al.  Volumetric Attention for 3D Medical Image Segmentation and Detection , 2019, MICCAI.

[562]  D. Giambelluca,et al.  PI-RADS 3 Lesions: Role of Prostate MRI Texture Analysis in the Identification of Prostate Cancer. , 2019, Current problems in diagnostic radiology.

[563]  D. Sharp,et al.  Magnetic resonance spectroscopy assessment of brain injury after moderate hypothermia in neonatal encephalopathy: a prospective multicentre cohort study , 2019, The Lancet Neurology.

[564]  José Ignacio Orlando,et al.  U2-Net: A Bayesian U-Net Model With Epistemic Uncertainty Feedback For Photoreceptor Layer Segmentation In Pathological OCT Scans , 2019, 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019).

[565]  J. Wardlaw,et al.  Perivascular spaces and their associations with risk factors, clinical disorders and neuroimaging features: A systematic review and meta-analysis , 2019, International journal of stroke : official journal of the International Stroke Society.

[566]  Delia Cabrera DeBuc,et al.  Deep Learning based Retinal OCT Segmentation , 2018, Comput. Biol. Medicine.

[567]  Jun Fu,et al.  Stacked Deconvolutional Network for Semantic Segmentation , 2017, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society.

[568]  Gongning Luo,et al.  An Automatic Cardiac Segmentation Framework based on Multi-sequence MR Image , 2019, STACOM@MICCAI.

[569]  Su Ruan,et al.  A review: Deep learning for medical image segmentation using multi-modality fusion , 2019, Array.

[570]  Anthony J. Yezzi,et al.  Tissue Classification to Support Local Active Delineation of Brain Tumors , 2019, MIUA.

[571]  Hervé Delingette,et al.  Explainable cardiac pathology classification on cine MRI with motion characterization by semi-supervised learning of apparent flow , 2018, Medical Image Anal..

[572]  Yanmin Niu,et al.  Automatic Vertebrae Localization and Identification by Combining Deep SSAE Contextual Features and Structured Regression Forest , 2019, Journal of Digital Imaging.

[573]  Ghassan Hamarneh,et al.  Learning to Segment Skin Lesions from Noisy Annotations , 2019, DART/MIL3ID@MICCAI.

[574]  Bryan M. Williams,et al.  Learning Active Contour Models for Medical Image Segmentation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[575]  P. Grant,et al.  Mining multi-site clinical data to develop machine learning MRI biomarkers: application to neonatal hypoxic ischemic encephalopathy , 2019, Journal of Translational Medicine.

[576]  Noel E. O'Connor,et al.  Assessing Knee OA Severity with CNN attention-based end-to-end architectures , 2018, MIDL.

[577]  G. Reilly,et al.  Multiscale hierarchical bioresorbable scaffolds for the regeneration of tendons and ligaments , 2019, Biofabrication.

[578]  Abhishek Das,et al.  Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[579]  Anthony J. Yezzi,et al.  Active contour algorithm with discriminant analysis for delineating tumors in positron emission tomography , 2019, Artif. Intell. Medicine.

[580]  Sang Hyun Park,et al.  Enhancement of Perivascular Spaces Using Densely Connected Deep Convolutional Neural Network , 2019, IEEE Access.

[581]  Gábor Székely,et al.  Modeling Point Spread Function in Fluorescence Microscopy With a Sparse Gaussian Mixture: Tradeoff Between Accuracy and Efficiency , 2018, IEEE Transactions on Image Processing.

[582]  Fuyong Xing,et al.  Pancreas Segmentation in CT and MRI via Task-Specific Network Design and Recurrent Neural Contextual Learning , 2019, Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics.

[583]  Tian Liu,et al.  Deeply supervised 3D fully convolutional networks with group dilated convolution for automatic MRI prostate segmentation , 2019, Medical physics.

[584]  Daniel Rueckert,et al.  Unsupervised Deformable Registration for Multi-Modal Images via Disentangled Representations , 2019, IPMI.

[585]  R. Zaidel-Bar,et al.  From cell shape to cell fate via the cytoskeleton - Insights from the epidermis. , 2019, Experimental cell research.

[586]  Naimul Mefraz Khan,et al.  A Novel Focal Tversky Loss Function With Improved Attention U-Net for Lesion Segmentation , 2018, 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019).

[587]  Arturo Brunetti,et al.  Machine learning applications in prostate cancer magnetic resonance imaging , 2019, European Radiology Experimental.

[588]  R. Stoyanova,et al.  Segmentation of prostate and prostate zones using deep learning , 2020, Strahlentherapie und Onkologie.

[589]  John Ashburner,et al.  Groupwise Multimodal Image Registration using Joint Total Variation , 2020, MIUA.

[590]  S. Walker-Samuel,et al.  Multi-Fluorescence High-Resolution Episcopic Microscopy (MF-HREM) for Three-Dimensional Imaging of Adult Murine Organs , 2020, bioRxiv.

[591]  Ross B. Girshick,et al.  Mask R-CNN , 2017, 1703.06870.

[592]  P. Matthews,et al.  Large-scale Quality Control of Cardiac Imaging in Population Studies: Application to UK Biobank , 2020, Scientific Reports.

[593]  C. Reyes-Aldasoro,et al.  Geometric Semi-automatic Analysis of Colles’ Fractures , 2020 .

[594]  L. Pelkmans,et al.  KCML: a machine‐learning framework for inference of multi‐scale gene functions from genetic perturbation screens , 2019, bioRxiv.

[595]  A. Tannenbaum,et al.  Perivascular spaces in the brain: anatomy, physiology and pathology , 2020, Nature Reviews Neurology.

[596]  J. Brady,et al.  Quantitative MRCP Imaging: Accuracy, Repeatability, Reproducibility, and Cohort‐Derived Normative Ranges , 2020, Journal of magnetic resonance imaging : JMRI.

[597]  Mark Jenkinson,et al.  Unlearning Scanner Bias for MRI Harmonisation , 2020, MICCAI.

[598]  Cristian A. Linte,et al.  Automated segmentation of cardiac chambers from cine cardiac MRI using an adversarial network architecture , 2020, Medical Imaging: Image-Guided Procedures.

[599]  S. M. Kamrul Hasan,et al.  CondenseUNet: A Memory-Efficient Condensely-Connected Architecture for Bi-ventricular Blood Pool and Myocardium Segmentation , 2020, Medical Imaging: Image-Guided Procedures.

[600]  Örjan Smedby,et al.  Shape Information Improves the Cross-Cohort Performance of Deep Learning-Based Segmentation of the Hippocampus , 2020, Frontiers in Neuroscience.

[601]  Ross B. Girshick,et al.  Focal Loss for Dense Object Detection , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[602]  S. Warfield,et al.  Deep learning with noisy labels: exploring techniques and remedies in medical image analysis , 2019, Medical Image Anal..

[603]  Julien Cohen-Adad,et al.  Deep semantic segmentation of natural and medical images: a review , 2019, Artificial Intelligence Review.

[604]  Diane J. Cook,et al.  A Survey of Unsupervised Deep Domain Adaptation , 2018, ACM Trans. Intell. Syst. Technol..

[605]  Bogdan J. Matuszewski,et al.  CT Scan Registration with 3D Dense Motion Field Estimation Using LSGAN , 2020, MIUA.

[606]  Simo Saarakkala,et al.  Adaptive Segmentation of Knee Radiographs for Selecting the Optimal ROI in Texture Analysis , 2019, Osteoarthritis and cartilage.

[607]  C. Dobel,et al.  Functional Outcome and Quality of Life After Hypoglossal-Facial Jump Nerve Suture , 2020, Frontiers in Surgery.

[608]  Martinus M. van Veen,et al.  Toward an Automatic System for Computer-Aided Assessment in Facial Palsy , 2019, Facial plastic surgery & aesthetic medicine.

[609]  Christos Davatzikos,et al.  Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan , 2019, NeuroImage.

[610]  Stefano Barone,et al.  A preliminary PET radiomics study of brain metastases using a fully automatic segmentation method , 2020, BMC Bioinformatics.

[611]  I. Deary,et al.  Computational quantification of brain perivascular space morphologies: Associations with vascular risk factors and white matter hyperintensities. A study in the Lothian Birth Cohort 1936 , 2019, NeuroImage: Clinical.

[612]  Anthony Yezzi,et al.  Development of a new fully three-dimensional methodology for tumours delineation in functional images , 2020, Comput. Biol. Medicine.

[613]  Yong Yin,et al.  MMFNet: A Multi-modality MRI Fusion Network for Segmentation of Nasopharyngeal Carcinoma , 2018, Neurocomputing.

[614]  Enhua Wu,et al.  Squeeze-and-Excitation Networks , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[615]  Christian Wachinger,et al.  Detect and Correct Bias in Multi-Site Neuroimaging Datasets , 2020, Medical Image Anal..

[616]  Balraj Naren,et al.  Medical Image Registration , 2022 .