Effect of Uniaxial Stress Upon the Electromechanical Properties of Various Piezoelectric Ceramics and Single Crystals

A systematic investigation of the stress-dependent (σ) electromechanical properties of various ferroelectric ceramics and single crystals has been performed. Studies have been carried out on “hard” and “soft” piezoelectrics, electrostrictive ceramics, and various orientations of (1−x)Pb(Mg1/3Nb2/3)O3–(x) PbTiO3 PMN–x%PT single crystals. The large signal piezoelectric constant, acoustic power density, and coupling coefficient have been determined by calculation. The results are compared, in order to develop an understanding of the relative merits of the different types of active acoustic materials.

[1]  R. S. Woollett Effective Coupling Factor of Single‐Degree‐of‐Freedom Transducers , 1966 .

[2]  G. Shirane,et al.  Phase diagram of the ferroelectric relaxor (1-x)PbMg1/3Nb2/3O3-xPbTiO3 , 2002, cond-mat/0203422.

[3]  Brahim Dkhil,et al.  Monoclinic structure of unpoled morphotropic high piezoelectric PMN-PT and PZN-PT compounds , 2002 .

[4]  Robert Gerson,et al.  Variation in Ferroelectric Characteristics of Lead Zirconate Titanate Ceramics Due to Minor Chemical Modifications , 1960 .

[5]  T. Ikeda,et al.  Piezoelectric Ceramics of Pb(Zr–Ti)O3 Modified by A1+B5+O3 or A3+B3+O3 , 1964 .

[6]  F. Bai,et al.  X-ray and neutron diffraction investigations of the structural phase transformation sequence under electric field in 0.7Pb(Mg1∕3Nb2∕3)-0.3PbTiO3 crystal , 2004, cond-mat/0402296.

[7]  Sethna,et al.  Disorder-driven pretransitional tweed pattern in martensitic transformations. , 1995, Physical review. B, Condensed matter.

[8]  Frank Kulcsar,et al.  Electromechanical Properties of Lead Titanate Zirconate Ceramics with Lead Partially Replaced by Calcium or Strontium , 1959 .

[9]  Thomas R. Shrout,et al.  Fabrication of perovskite lead magnesium niobate , 1982 .

[10]  D. Viehland,et al.  Effect of uniaxial stress on the electromechanical properties of 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 crystals and ceramics , 2001 .

[11]  M. Wuttig,et al.  Twinning pseudoelasticity in InTl , 1983 .

[12]  G. Samara Pressure and Temperature Dependence of the Dielectric Properties and Phase Transitions of the Antiferroelectric Perovskites: PbZrO3and PbHfO3 , 1970 .

[13]  G. Shirane,et al.  Monoclinic phase in the relaxor-based piezoelectric/ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 system , 2001, cond-mat/0107276.

[14]  Zhengkui Xu,et al.  The spontaneous relaxor to normal ferroelectric transformation in La-modified lead zirconate titanate , 1994 .

[15]  Kenji Uchino,et al.  Phase transitions in the Pb (Zn1/3Nb2/3)O3-PbTiO3 system , 1981 .

[16]  Horst Beige,et al.  Electromechanical resonances for investigating linear and nonlinear properties of dielectrics , 1982 .

[17]  Dwight D. Viehland,et al.  Symmetry-adaptive ferroelectric mesostates in oriented Pb(BI1/3BII2/3)O3–PbTiO3 crystals , 2000 .

[18]  T. Shrout,et al.  Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals , 1997 .

[19]  Da-Ming Zhu,et al.  Thermal conductivity and electromechanical property of single-crystal lead magnesium niobate titanate , 1999 .

[20]  D. Viehland,et al.  Conformal miniaturization of domains with low domain-wall energy: monoclinic ferroelectric states near the morphotropic phase boundaries. , 2003, Physical review letters.

[21]  D. Vanderbilt,et al.  Monoclinic and triclinic phases in higher-order Devonshire theory , 2000, cond-mat/0009337.

[22]  L. E. Cross,et al.  Freezing of the polarization fluctuations in lead magnesium niobate relaxors , 1990 .

[23]  Zhengkui Xu,et al.  Role of defect distributions and mobility on ferroelectric phase transformations in lead zirconate titanate , 1997 .

[24]  D. Viehland,et al.  The influence of mobile vs. randomly quenched impurities on ferroelectric phase transformations , 1998 .

[25]  Ronald E. Cohen,et al.  Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics , 2000, Nature.

[26]  Zhengkui Xu,et al.  Long‐time present tweedlike precursors and paraelectric clusters in ferroelectrics containing strong quenched randomness , 1995 .

[27]  D. Viehland,et al.  Adaptive ferroelectric states in systems with low domain wall energy: Tetragonal microdomains , 2003 .

[28]  G. Schmidt Diffuse ferroelectric phase transitions in cubically sabilized perovskites , 1990 .

[29]  Wen‐hua Jiang,et al.  High-frequency dispersion of ultrasonic velocity and attenuation of single-crystal 0.72 Pb(Mg1/3Nb2/3)O3–0.28 PbTiO3 with engineered domain structures , 2002 .

[30]  P. Rehrig,et al.  Neutron diffraction study of field-cooling effects on the relaxor ferroelectricPb[(Zn1/3Nb2/3)0.92Ti0.08]O3 , 2002, cond-mat/0207726.

[31]  Kenji Uchino,et al.  Dielectric and Piezoelectric Properties of 0.91Pb(Zn1/3Nb2/3)O3-0.09PbTiO3 Single Crystals , 1982 .

[32]  D. Viehland,et al.  Ferroelectric behaviours dominated by mobile and randomly quenched impurities in modified lead zirconatetitanate ceramics , 1997 .

[33]  Gary L. Messing,et al.  Piezoelectric properties of 〈001〉 textured Pb(Mg1/3Nb2/3)O3–PbTiO3 ceramics , 2001 .

[34]  T. Shrout,et al.  Characteristics of relaxor-based piezoelectric single crystals for ultrasonic transducers , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.