Perovskite as light harvester: a game changer in photovoltaics.

It is not often that the scientific community is blessed with a material, which brings enormous hopes and receives special attention. When it does, it expands at a rapid pace and its every dimension creates curiosity. One such material is perovskite, which has triggered the development of new device architectures in energy conversion. Perovskites are of great interest in photovoltaic devices due to their panchromatic light absorption and ambipolar behavior. Power conversion efficiencies have been doubled in less than a year and over 15% is being now measured in labs. Every digit increment in efficiency is being celebrated widely in the scientific community and is being discussed in industry. Here we provide a summary on the use of perovskite for inexpensive solar cells fabrication. It will not be unrealistic to speculate that one day perovskite-based solar cells can match the capability and capacity of existing technologies.

[1]  B. Liu,et al.  Solid‐State Dye‐Sensitized Solar Cells with Conjugated Polymers as Hole‐Transporting Materials , 2011 .

[2]  M. Era,et al.  Polarized electroluminescence from oriented p‐sexiphenyl vacuum‐deposited film , 1995 .

[3]  David B Mitzi,et al.  Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating. , 2005, Inorganic chemistry.

[4]  H. Butt,et al.  Yttrium-substituted nanocrystalline TiO₂ photoanodes for perovskite based heterojunction solar cells. , 2014, Nanoscale.

[5]  Jenny Nelson,et al.  Nondispersive hole transport in amorphous films of methoxy-spirofluorene-arylamine organic compound , 2003 .

[6]  Martin A. Green,et al.  Solar cell efficiency tables (version 39) , 2012 .

[7]  Takashi Kondo,et al.  Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3 , 2003 .

[8]  N. Park,et al.  Synthesis, structure, and photovoltaic property of a nanocrystalline 2H perovskite-type novel sensitizer (CH3CH2NH3)PbI3 , 2012, Nanoscale Research Letters.

[9]  D. Weber CH3NH3SnBrxI3-x (x = 0-3), ein Sn(II)-System mit kubischer Perowskitstruktur / CH3NH3SnBrxI3-x(x = 0-3), a Sn(II)-System with Cubic Perovskite Structure , 1978 .

[10]  Juan Bisquert,et al.  Electron transport and recombination in solid-state dye solar cell with spiro-OMeTAD as hole conductor. , 2009, Journal of the American Chemical Society.

[11]  D. Billing,et al.  Synthesis and crystal structures of inorganic–organic hybrids incorporating an aromatic amine with a chiral functional group , 2006 .

[12]  Bin Liu,et al.  Growth of oriented single-crystalline rutile TiO(2) nanorods on transparent conducting substrates for dye-sensitized solar cells. , 2009, Journal of the American Chemical Society.

[13]  Frank Lenzmann,et al.  A Solid-State Dye-Sensitized Solar Cell Fabricated with Pressure-Treated P25−TiO2 and CuSCN: Analysis of Pore Filling and IV Characteristics , 2002 .

[14]  Yoshihiro Furukawa,et al.  Phase Transition and Electric Conductivity of ASnCl3 (A = Cs and CH3NH3). , 1998 .

[15]  Sang-Wook Kim,et al.  All solid state multiply layered PbS colloidal quantum-dot-sensitized photovoltaic cells , 2011 .

[16]  M. Kanatzidis,et al.  All-solid-state dye-sensitized solar cells with high efficiency , 2012, Nature.

[17]  D. Mitzi,et al.  Conducting Layered Organic-inorganic Halides Containing <110>-Oriented Perovskite Sheets , 1995, Science.

[18]  Takayuki Kitamura,et al.  Solid state dye sensitized solar cells using in situ polymerized PEDOTs as hole conductor , 2004 .

[19]  Michael Grätzel,et al.  First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications , 2013 .

[20]  Juan Bisquert,et al.  Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells , 2003 .

[21]  Vasilis Fthenakis,et al.  Sustainability of photovoltaics: The case for thin-film solar cells , 2009 .

[22]  D. Mitzi,et al.  Organic-inorganic perovskites containing trivalent metal halide layers: the templating influence of the organic cation layer. , 2000, Inorganic chemistry.

[23]  Jieshan Qiu,et al.  High performance hybrid solar cells sensitized by organolead halide perovskites , 2013 .

[24]  Nam-Gyu Park,et al.  Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell , 2013 .

[25]  Cherie R. Kagan,et al.  Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors , 1999, Science.

[26]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[27]  G. Kron,et al.  Electronic Transport in Dye-Sensitized Nanoporous TiO2 Solar CellsComparison of Electrolyte and Solid-State Devices , 2003 .

[28]  Marco Piccirelli,et al.  High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination , 2001 .

[29]  Michael Grätzel,et al.  Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency , 2011, Science.

[30]  C. Grimes,et al.  Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. , 2008, Nano letters.

[31]  H. Snaith,et al.  Low-temperature processed meso-superstructured to thin-film perovskite solar cells , 2013 .

[32]  Josef Salbeck,et al.  Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies , 1998, Nature.

[33]  Hasitha C. Weerasinghe,et al.  Solid-state dye-sensitized solar cell with p-type NiO as a hole collector , 2005 .

[34]  Ewa M. Goldys,et al.  Linear Absorption and Molar Extinction Coefficients in Direct Semiconductor Quantum Dots , 2008 .

[35]  D. Mitzi,et al.  Conducting tin halides with a layered organic-based perovskite structure , 1994, Nature.

[36]  Henry J. Snaith,et al.  Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance , 2013, Nature.

[37]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[38]  Albrecht Poglitsch,et al.  Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter‐wave spectroscopy , 1987 .

[39]  Daniel T. Schwartz,et al.  Large Enhancement in Photocurrent Efficiency Caused by UV Illumination of the Dye-Sensitized Heterojunction TiO2/RuLL‘NCS/CuSCN: Initiation and Potential Mechanisms , 1998 .

[40]  Nam-Gyu Park,et al.  High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. , 2013, Nano letters.

[41]  B. Liu,et al.  High-Performance Solid-State Organic Dye Sensitized Solar Cells with P3HT as Hole Transporter , 2011 .

[42]  Gary Hodes,et al.  Sb2S3-Sensitized Nanoporous TiO2 Solar Cells , 2009 .

[43]  Jenny Nelson,et al.  Continuous-time random-walk model of electron transport in nanocrystalline TiO 2 electrodes , 1999 .

[44]  D. Haarer,et al.  Synthesis of low melting hole conductor systems based on triarylamines and application in dye sensitized solar cells , 2001 .

[45]  B. Peng,et al.  Dual-functional materials for interface modifications in solid-state dye-sensitised TiO2 solar cells , 2004 .

[46]  F. Fabregat‐Santiago,et al.  From flat to nanostructured photovoltaics: balance between thickness of the absorber and charge screening in sensitized solar cells. , 2012, ACS nano.

[47]  Juan Bisquert,et al.  Mechanism of carrier accumulation in perovskite thin-absorber solar cells , 2013, Nature Communications.

[48]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[49]  M. Ikegami,et al.  Highly Luminescent Lead Bromide Perovskite Nanoparticles Synthesized with Porous Alumina Media , 2012 .

[50]  Yuji Wada,et al.  Solid State Dye-Sensitized TiO2 Solar Cell with Polypyrrole as Hole Transport Layer , 1997 .

[51]  David B. Mitzi,et al.  Transport, Optical, and Magnetic Properties of the Conducting Halide Perovskite CH3NH3SnI3 , 1995 .

[52]  David Cahen,et al.  High Open-Circuit Voltage Solar Cells Based on Organic-Inorganic Lead Bromide Perovskite. , 2013, The journal of physical chemistry letters.

[53]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[54]  David B. Mitzi,et al.  Organic-inorganic electronics , 2001, IBM J. Res. Dev..

[55]  Peng Gao,et al.  Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. , 2012, Journal of the American Chemical Society.

[56]  R. Humphry-Baker,et al.  Solid-State Dye-Sensitized Solar Cells using Ordered TiO2 Nanorods on Transparent Conductive Oxide as Photoanodes , 2012 .

[57]  David B. Mitzi,et al.  Solution-processed inorganic semiconductors , 2004 .

[58]  Giuseppe Gigli,et al.  MAPbI3-xClx Mixed Halide Perovskite for Hybrid Solar Cells: The Role of Chloride as Dopant on the Transport and Structural Properties , 2013 .

[59]  Yongcai Qiu,et al.  All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays. , 2013, Nanoscale.

[60]  Juan Bisquert,et al.  Breakthroughs in the Development of Semiconductor-Sensitized Solar Cells , 2010 .

[61]  Wilhelm Warta,et al.  Solar cell efficiency tables (version 42) , 2013 .

[62]  M Bonn,et al.  Local field effects on electron transport in nanostructured TiO2 revealed by terahertz spectroscopy. , 2006, Nano letters.

[63]  Michael Grätzel,et al.  Nanostructured TiO2/CH3NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/Co-complex as hole-transporting material , 2013 .

[64]  Michael Grätzel,et al.  Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells. , 2011, Journal of the American Chemical Society.

[65]  Erik M. J. Johansson,et al.  Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures , 2013 .

[66]  D. Haarer,et al.  Hybrid solar cells with novel hole transporting poly(triphenyldiamine)s , 2001 .

[67]  M. Grätzel,et al.  Toward interaction of sensitizer and functional moieties in hole-transporting materials for efficient semiconductor-sensitized solar cells. , 2011, Nano letters.

[68]  Lioz Etgar,et al.  Depleted hole conductor-free lead halide iodide heterojunction solar cells , 2013 .

[69]  David B. Mitzi,et al.  Templating and structural engineering in organic–inorganic perovskites , 2001 .

[70]  Ralf Fink,et al.  Novel hybrid solar cells consisting of inorganic nanoparticles and an organic hole transport material , 1997 .

[71]  Guangda Niu,et al.  Post modification of perovskite sensitized solar cells by aluminum oxide for enhanced performance , 2013 .

[72]  M. White,et al.  Alkylammonium lead halides. Part 2. CH3NH3PbX3 (X = Cl, Br, I) perovskites: cuboctahedral halide cages with isotropic cation reorientation , 1990 .

[73]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[74]  M. Nagai,et al.  Highly efficient all solid state dye-sensitized solar cells by the specific interaction of CuI with NCS groups II. Enhancement of the photovoltaic characteristics , 2012 .

[75]  L. Galmiche,et al.  Synthesis and optical properties of novel organic–inorganic hybrid nanolayer structure semiconductors , 2009 .

[76]  Choong-Sun Lim,et al.  Panchromatic photon-harvesting by hole-conducting materials in inorganic-organic heterojunction sensitized-solar cell through the formation of nanostructured electron channels. , 2012, Nano letters.

[77]  Laura L. Kosbar,et al.  Structurally Tailored Organic−Inorganic Perovskites: Optical Properties and Solution-Processed Channel Materials for Thin-Film Transistors , 2001 .

[78]  Yi-bing Cheng,et al.  Solid-state Ru-dye solar cells using polypyrrole as a hole conductor , 2004 .

[79]  Yucheng He,et al.  Controllable synthesis of brookite/anatase/rutile TiO2 nanocomposites and single-crystalline rutile nanorods array , 2012 .

[80]  Martin A. Green,et al.  Solar cell efficiency tables (version 41) , 2013 .

[81]  K. Tennakone,et al.  A dye-sensitized nano-porous solid-state photovoltaic cell , 1995 .

[82]  Jun Lin,et al.  Layered organic-inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering , 2010 .

[83]  Zach M. Beiley,et al.  Modeling low cost hybrid tandem photovoltaics with the potential for efficiencies exceeding 20 , 2012 .

[84]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[85]  U. Bach,et al.  Charge Separation in Solid-State Dye-Sensitized Heterojunction Solar Cells , 1999 .

[86]  S. Y. Chiam,et al.  Low temperature processing solid-state dye sensitized solar cells , 2012 .

[87]  Yao Sun,et al.  Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles. , 2013, Nano letters.

[88]  David B. Mitzi,et al.  Electroluminescence from an Organic−Inorganic Perovskite Incorporating a Quaterthiophene Dye within Lead Halide Perovskite Layers , 1999 .

[89]  Eunkyoung Kim,et al.  Enhanced Performance of I2‐Free Solid‐State Dye‐Sensitized Solar Cells with Conductive Polymer up to 6.8% , 2011 .

[90]  Mohammad Khaja Nazeeruddin,et al.  Metal free sensitizer and catalyst for dye sensitized solar cells , 2013 .

[91]  M. Grätzel,et al.  Poly(4-undecyl-2,2'-bithiophene) as a hole conductor in solid state dye sensitized titanium dioxide solar cells , 2001 .

[92]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[93]  A. Kahn,et al.  Photovoltaic efficiency limits and material disorder , 2012 .

[94]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[95]  Md. K. Nazeeruddin,et al.  High-performance nanostructured inorganic-organic heterojunction solar cells. , 2010, Nano letters.