Noninvasive magnetic resonance thermography of recurrent rectal carcinoma in a 1.5 Tesla hybrid system.

To implement noninvasive thermometry, we installed a hybrid system consisting of a radiofrequency multiantenna applicator (SIGMA-Eye) for deep hyperthermia (BSD-2000/3D) integrated into the gantry of a 1.5 Tesla magnetic resonance (MR) tomograph Symphony. This system can record MR data during radiofrequency heating and is suitable for application and evaluation of methods for MR thermography. In 15 patients with preirradiated pelvic rectal recurrences, we acquired phase data sets (25 slices) every 10 to 15 minutes over the treatment time (60-90 minutes) using gradient echo sequences (echo time = 20 ms), transformed the phase differences to MR temperatures, and fused the color-coded MR-temperature distributions with anatomic T1-weighted MR data sets. We could generate one complete series of MR data sets per patient with satisfactory quality for further analysis. In fat, muscle, water bolus, prostate, bladder, and tumor, we delineated regions of interest (ROI), used the fat ROI for drift correction by transforming these regions to a phase shift zero, and evaluated the MR-temperature frequency distributions. Mean MR temperatures (T(MR)), maximum T(MR), full width half maximum (FWHM), and other descriptors of tumors and normal tissues were noninvasively derived and their dependencies outlined. In 8 of 15 patients, direct temperature measurements in reference points were available. We correlated the tumor MR temperatures with direct measurements, clinical response, and tumor features (volume and location), and found reasonable trends and correlations. Therefore, the mean T(MR) of the tumor might be useful as a variable to evaluate the quality and effectivity of heat treatments, and consequently as optimization variable. Feasibility of noninvasive MR thermography for regional hyperthermia has been shown and should be further investigated.

[1]  P. Wust,et al.  Hyperthermia in combined treatment of cancer. , 2002, The Lancet Oncology.

[2]  J. Poorter,et al.  Noninvasive MRI Thermometry with the Proton Resonance Frequency (PRF) Method: In Vivo Results in Human Muscle , 1995, Magnetic resonance in medicine.

[3]  M. Reiser,et al.  Hyperthermia induces T1 relaxation and blood flow changes in tumors. A MRI thermometry study in vivo. , 2003, Magnetic resonance imaging.

[4]  K. Hynynen,et al.  Temperature Mapping using the water proton chemical shift: A chemical shift selective phase mapping method , 1997, Magnetic resonance in medicine.

[5]  D L Parker,et al.  Temperature distribution measurements in two-dimensional NMR imaging. , 1983, Medical physics.

[6]  F A Jolesz,et al.  MR imaging-guided focused ultrasound surgery of fibroadenomas in the breast: a feasibility study. , 2001, Radiology.

[7]  D. Le Bihan,et al.  Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. , 1988, Radiology.

[8]  P. Wust,et al.  Temperature data and specific absorption rates in pelvic tumours: predictive factors and correlations. , 2001, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[9]  P Wust,et al.  Three‐dimensional monitoring of small temperature changes for therapeutic hyperthermia using MR , 1998, Journal of magnetic resonance imaging : JMRI.

[10]  Bruno Quesson,et al.  Magnetic resonance temperature imaging for guidance of thermotherapy , 2000, Journal of magnetic resonance imaging : JMRI.

[11]  A. Ismail,et al.  Preoperative Radiochemotherapy in Locally Advanced Rectal Cancer , 2001 .

[12]  J V Hajnal,et al.  An evaluation of the effects of susceptibility changes on the water chemical shift method of temperature measurement in human peripheral muscle , 1996, Magnetic resonance in medicine.

[13]  M. Mack,et al.  [Verification of MR thermometry by means of an in vivo intralesional, fluoroptic temperature measurement for laser-induced thermotherapy ov liver metastases]. , 1998, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[14]  A. Hart,et al.  Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial , 2000, The Lancet.

[15]  R M Henkelman,et al.  Prostate cancer: MR imaging and thermometry during microwave thermal ablation-initial experience. , 2000, Radiology.

[16]  R. L. Levin,et al.  Noninvasive temperature imaging using diffusion MRI , 1991, Magnetic resonance in medicine.

[17]  René M. Botnar,et al.  Temperature quantification using the proton frequency shift technique: In vitro and in vivo validation in an open 0.5 tesla interventional MR scanner during RF ablation , 2001, Journal of magnetic resonance imaging : JMRI.

[18]  P Wust,et al.  Rationale for using invasive thermometry for regional hyperthermia of pelvic tumors. , 1998, International journal of radiation oncology, biology, physics.

[19]  Eric Achten,et al.  The Proton-Resonance-Frequency-Shift Method Compared with Molecular Diffusion for Quantitative Measurement of Two-Dimensional Time-Dependent Temperature Distribution in a Phantom , 1994 .

[20]  P. Wust,et al.  Regional hyperthermia for rectal cancer , 2000, The Lancet.

[21]  Andrew G. Webb,et al.  Optimization of electromagnetic phased-arrays for hyperthermia via magnetic resonance temperature estimation , 2002, IEEE Transactions on Biomedical Engineering.

[22]  Kullervo Hynynen,et al.  MRI evaluation of thermal ablation of tumors with focused ultrasound , 1998, Journal of magnetic resonance imaging : JMRI.

[23]  Babak Behnia,et al.  Closed‐loop feedback control of phased‐array microwave heating using thermal measurements from magnetic resonance imaging , 2002 .

[24]  MRT-gestützte laserinduzierte Thermoablation bei Lebertumoren – Klinische Aspekte und Konzept eines Überwachungssystems , 2003 .

[25]  M. Reiser,et al.  MRT-gesteuerte regionale Tiefenhyperthermie , 1999, Der Radiologe.

[26]  M. Mack,et al.  Verifizierung der MR-Thermometrie mittels in vivo intraläsionaler, fluoroptischer Temperaturmessung für die laserinduzierte Thermo-therapie von Lebermetastasen , 1998 .

[27]  M. Dewhirst,et al.  Should interstitial thermometry be used for deep hyperthermia? , 1998, International journal of radiation oncology, biology, physics.

[28]  K Hynynen,et al.  MRI monitoring of the thermal ablation of tissue: Effects of long exposure times , 2001, Journal of magnetic resonance imaging : JMRI.

[29]  R M Henkelman,et al.  Ex vivo tissue‐type independence in proton‐resonance frequency shift MR thermometry , 1998, Magnetic resonance in medicine.

[30]  Peter Reimer,et al.  Accuracy of non-enhanced MRI to monitor histological lesion size during laser-induced interstitial thermotherapy , 2002, European Radiology.

[31]  W. Wilmanns,et al.  Ifosfamide plus etoposide combined with regional hyperthermia in patients with locally advanced sarcomas: a phase II study. , 1990, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[32]  P. Wust,et al.  Regional Hyperthermia in Conjunction with Definitive Radiotherapy against Recurrent or Locally Advanced Prostate Cancer T3 pN0 M0 , 2005, Strahlentherapie und Onkologie.

[33]  J. MacFall,et al.  Non-invasive thermometry using magnetic resonance diffusion imaging: potential for application in hyperthermic oncology. , 1992, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[34]  Angela Oatridge,et al.  Modeling and observation of temperature changes in Vivo using MRI , 1994, Magnetic resonance in medicine.

[35]  R Felix,et al.  Influence of patient models and numerical methods on predicted power deposition patterns. , 1999, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[36]  P. Wust,et al.  Methods and potentials of magnetic resonance imaging for monitoring radiofrequency hyperthermia in a hybrid system , 2005, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[37]  J. van der Zee,et al.  Practical limitations of interstitial thermometry during deep hyperthermia. , 1998, International journal of radiation oncology, biology, physics.

[38]  F A Jolesz,et al.  Dynamic T1‐weighted magnetic resonance imaging of interstitial laser photocoagulation in the liver: Observations on in vivo temperature sensitivity , 1996, Lasers in surgery and medicine.

[39]  M. Seebass,et al.  Clinical, physiological and anatomical determinants for radiofrequency hyperthermia. , 1995, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[40]  J. Zee Heating the patient : a promising approach ? , 2002 .

[41]  S Sawada,et al.  A randomized clinical trial of radiation therapy versus thermoradiotherapy in stage IIIB cervical carcinoma. , 2001, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[42]  H. Amthauer,et al.  Regional pelvic hyperthermia as an adjunct to chemotherapy (oxaliplatin, folinic acid, 5-fluorouracil) in pre-irradiated patients with locally recurrent rectal cancer: a pilot study , 2004, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[43]  Maximilian Reiser,et al.  T1 relaxation time at 0.2 Tesla for monitoring regional hyperthermia: Feasibility study in muscle and adipose tissue , 2002, Magnetic resonance in medicine.

[44]  Waldemar Wlodarczyk,et al.  A practical approach to thermography in a hyperthermia/magnetic resonance hybrid system: validation in a heterogeneous phantom. , 2005, International journal of radiation oncology, biology, physics.

[45]  N Hosten,et al.  Comparison of four magnetic resonance methods for mapping small temperature changes , 1999, Physics in medicine and biology.

[46]  J. MacFall,et al.  Magnetic resonance thermometry during hyperthermia for human high-grade sarcoma. , 1998, International journal of radiation oncology, biology, physics.

[47]  M. Seebass,et al.  Teilkörperhyperthermie mit einem Radiofrequenz-Multiantennen-Applikator unter online Kontrolle in einem 1,5 T MR-Tomographen , 2004, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[48]  P Wust,et al.  Design and test of a new multi-amplifier system with phase and amplitude control. , 1998, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[49]  Richard van Hillegersberg,et al.  Accuracy of MR phase mapping for temperature monitoring during interstitial laser coagulation (ILC) in the liver at rest and simulated respiration , 1999, Magnetic resonance in medicine.