Macroscale refrigeration by nanoscale electron transport

We demonstrate a general-purpose solid-state refrigerator for sub-Kelvin temperatures based on the tunneling of hot electrons through normal-metal/insulator/superconductor (NIS) junctions. Previous devices using this cooling principle fell short of general-purpose refrigerators since they could not be coupled to arbitrary payloads. To create a viable refrigerator, we developed optimized NIS structures and techniques to couple multiple such structures to arbitrary objects. Using three linked NIS devices, we reduced the temperature of a 1.9 cm3 copper stage from 290 mK to 256 mK with 700 pW of cooling power at 290 mK. We present plans to achieve base temperatures near 100 mK.

[1]  T. Eiles,et al.  Electronic Microrefrigerator Based on a Normal-Insulator-Superconductor Tunnel Junction , 1994 .

[2]  P. Roach Kevlar support for thermal isolation at low temperatures , 1992 .

[3]  Joel N. Ullom,et al.  Measurement and modeling of a large-area normal-metal/insulator/superconductor refrigerator with improved cooling , 2012 .

[4]  D. V. Averin,et al.  Efficient Peltier refrigeration by a pair of normal metal/insulator/superconductor junctions , 1996 .

[5]  J. Ullom,et al.  Practical electron-tunneling refrigerator , 2004 .

[6]  A. Kalabukhov,et al.  Electron cooling in a normal-metal hot-electron bolometer , 2003 .

[7]  D O Caldwell,et al.  Dark Matter Search Results from the CDMS II Experiment , 2009, Science.

[8]  L. Solymar,et al.  Superconductive tunnelling and applications , 1972 .

[9]  Refrigeration of separate, user-supplied payloads with Normal–Insulator–Superconductor tunnel junctions ☆ , 2012 .

[10]  R. Parmenter Enhancement of Superconductivity by Extraction of Normal Carriers , 1961 .

[11]  Edward J. Wollack,et al.  Evidence for dark energy from the cosmic microwave background alone using the Atacama Cosmology Telescope lensing measurements. , 2011, Physical review letters.

[12]  O. Zahn,et al.  NEW LIMITS ON EARLY DARK ENERGY FROM THE SOUTH POLE TELESCOPE , 2011, 1110.5328.

[13]  G. Hilton,et al.  Measurements and modeling of phonon cooling by electron-tunneling refrigerators , 2005, IEEE Transactions on Applied Superconductivity.

[14]  F. Beltram,et al.  Cooling electrons from 1 to 0.4 K with V-based nanorefrigerators , 2010, 1011.0588.

[15]  J. Clarke,et al.  Enhancement of the energy gap in superconducting aluminum by tunneling extraction of quasiparticles , 1979 .

[16]  Edward J. Wollack,et al.  Evidence of galaxy cluster motions with the kinematic Sunyaev-Zel'dovich effect. , 2012, Physical review letters.

[17]  G. Hilton,et al.  Cooling of bulk material by electron-tunneling refrigerators , 2005 .

[18]  J. Pekola,et al.  Micrometre-scale refrigerators , 2012, Reports on progress in physics. Physical Society.

[19]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[20]  F. Pobell,et al.  Matter and Methods at Low Temperatures , 1992 .

[21]  Andrew S. Dzurak,et al.  A single-atom electron spin qubit in silicon , 2012, Nature.

[22]  J. Pekola,et al.  Substrate-dependent quasiparticle recombination time in superconducting resonators , 2011 .

[23]  G. Hilton,et al.  High resolution x-ray transition-edge sensor cooled by tunnel junction refrigerators , 2008 .

[24]  Hung Q. Nguyen,et al.  Etching suspended superconducting hybrid junctions from a multilayer , 2011, 1111.3541.

[25]  P. Richards,et al.  Specific heat of stainless steel below T = 1 K , 1995 .