The unstable CO2 feedback cycle on ocean planets

Ocean planets are volatile-rich planets, not present in our Solar system, which are thought to be dominated by deep, global oceans. This results in the formation of high-pressure water ice, separating the planetary crust from the liquid ocean and, thus, also from the atmosphere. Therefore, instead of a carbonate-silicate cycle like on the Earth, the atmospheric carbon dioxide concentration is governed by the capability of the ocean to dissolve carbon dioxide (CO2). In our study, we focus on the CO2 cycle between the atmosphere and the ocean which determines the atmospheric CO2 content. The atmospheric amount of CO2 is a fundamental quantity for assessing the potential habitability of the planet's surface because of its strong greenhouse effect, which determines the planetary surface temperature to a large degree. In contrast to the stabilizing carbonate-silicate cycle regulating the long-term CO2 inventory of the Earth atmosphere, we find that the CO2 cycle feedback on ocean planets is negative and has strong destabilizing effects on the planetary climate. By using a chemistry model for oceanic CO2 dissolution and an atmospheric model for exoplanets, we show that the CO2 feedback cycle can severely limit the extension of the habitable zone for ocean planets.

[1]  M. Kunze,et al.  Investigating the early Earth faint young Sun problem with a general circulation model , 2014 .

[2]  D. Sasselov,et al.  STRUCTURE AND DYNAMICS OF COLD WATER SUPER-EARTHS: THE CASE OF OCCLUDED CH4 AND ITS OUTGASSING , 2014, 1407.7779.

[3]  Willy Benz,et al.  From planetesimals to planets: volatile molecules , 2014, 1407.7282.

[4]  Yann Alibert,et al.  From stellar nebula to planets: The refractory components , 2013, 1312.3085.

[5]  Y. Alibert On the radius of habitable planets , 2013, 1311.3039.

[6]  P. Giommi,et al.  The PLATO 2.0 mission , 2013, 1310.0696.

[7]  F. Selsis,et al.  The dependence of the ice-albedo feedback on atmospheric properties. , 2013, Astrobiology.

[8]  A. Fortier,et al.  Theoretical models of planetary system formation: mass vs. semi-major axis , 2013, 1307.4864.

[9]  O. Toon,et al.  Hospitable archean climates simulated by a general circulation model. , 2013, Astrobiology.

[10]  R. Pierrehumbert,et al.  WATER LOSS FROM TERRESTRIAL PLANETS WITH CO2-RICH ATMOSPHERES , 2013, 1306.3266.

[11]  H. Rauer,et al.  N2-associated surface warming on early Mars , 2013, 1304.6024.

[12]  R. Deshpande,et al.  HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: NEW ESTIMATES , 2013, 1301.6674.

[13]  F. Selsis,et al.  Atmospheric constraints for the CO2 partial pressure on terrestrial planets near the outer edge of the habitable zone , 2012, 1211.4367.

[14]  D. Abbot,et al.  INDICATION OF INSENSITIVITY OF PLANETARY WEATHERING BEHAVIOR AND HABITABLE ZONE TO SURFACE LAND FRACTION , 2012, 1208.1760.

[15]  R. Pierrehumbert,et al.  HYDROGEN GREENHOUSE PLANETS BEYOND THE HABITABLE ZONE , 2011, 1105.0021.

[16]  Jonathan Tennyson,et al.  HITEMP, the high-temperature molecular spectroscopic database , 2010 .

[17]  H. Rauer,et al.  Clouds in the atmospheres of extrasolar planets - I. Climatic effects of multi-layered clouds for Earth-like planets and implications for habitable zones , 2010, 1002.2927.

[18]  D. Sasselov,et al.  THE INTERIOR DYNAMICS OF WATER PLANETS , 2010, 1001.2890.

[19]  Xavier Bonfils,et al.  A super-Earth transiting a nearby low-mass star , 2009, Nature.

[20]  A. Coustenis,et al.  What makes a planet habitable? , 2009 .

[21]  Helmut Lammer,et al.  Atmospheric Escape and Evolution of Terrestrial Planets and Satellites , 2008 .

[22]  M. Choukroun,et al.  Thermodynamic model for water and high-pressure ices up to 2.2 GPa and down to the metastable domain. , 2007, The Journal of chemical physics.

[23]  Norman A. McFarlane,et al.  Ocean Surface Albedo and Its Impact on Radiation Balance in Climate Models , 2006 .

[24]  C. Gueymard The sun's total and spectral irradiance for solar energy applications and solar radiation models , 2004 .

[25]  H. Rix,et al.  James Webb Space Telescope , 2022, Resonance.

[26]  C. Sotin,et al.  A new family of planets? Ocean-Planets , 2003 .

[27]  K. Caldeira,et al.  Oceanography: Anthropogenic carbon and ocean pH , 2003, Nature.

[28]  M. Kuchner Volatile-rich Earth-Mass Planets in the Habitable Zone , 2003, astro-ph/0303186.

[29]  L. Rothschild,et al.  Life in extreme environments , 2001, Nature.

[30]  Charles S. Cockell,et al.  Life on venus , 1999 .

[31]  C. McKay,et al.  Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres , 1989 .

[32]  F. X. Kneizys,et al.  Line shape and the water vapor continuum , 1989 .

[33]  J. Kasting,et al.  Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. , 1988, Icarus.

[34]  D. Gough Solar interior structure and luminosity variations , 1981 .

[35]  Paul B. Hays,et al.  A negative feedback mechanism for the long‐term stabilization of Earth's surface temperature , 1981 .

[36]  Syukuro Manabe,et al.  Thermal Equilibrium of the Atmosphere with a Given Distribution of Relative Humidity , 1967 .

[37]  R. F. Strickler,et al.  Thermal Equilibrium of the Atmosphere with a Convective Adjustment , 1964 .

[38]  Franz Simon,et al.  Bemerkungen zur Schmelzdruckkurve , 1929 .

[39]  Marina Bosch,et al.  Principles Of Planetary Climate , 2016 .

[40]  Freiburg i. Br.,et al.  Zeitschrift für anorganische und allgemeine Chemie , 2012 .

[41]  J. Kasting,et al.  Habitable zones around main sequence stars. , 1993, Icarus.

[42]  M. Komabayasi Discrete Equilibrium Temperatures of a Hypothetical Planet with the Atmosphere and the Hydrosphere of One Component-Two Phase System under Constant Solar Radiation , 1967 .

[43]  D. Ambrose The vapour pressures and critical temperatures of acetylene and carbon dioxide , 1956 .