Desorption of alkali atoms and ions from oxide surfaces: Relevance to origins of Na and K in atmospheres of Mercury and the Moon

This paper begins with a brief survey of the literature dealing with the adsorption and desorption of alkalis on oxide surfaces. Emphasis is on desorption phenomena: thermal desorption, electron- and photon-stimulated desorption, and ion-induced desorption (sputtering). Then the relevance of these data to the desorption of alkalis from mineral surfaces and to the origins of alkali vapors in tenuous planetary atmospheres is discussed. The data presented for Na and K indicate that desorption processes initiated by thermal or electronic excitations do not depend strongly on whether the Na returns to the surface or diffuses up through the regolith, and that neutral yields dominate ion yields in all cases. Although the desorbed neutral energy distributions are not well approximated by Maxwell-Boltzmann distributions, the mean energies of the desorbed neutral Na and K are seen to be consistent with the temperatures extracted for the “hot” component of the lunar atmosphere. This suggests that the “hot” component may be produced by electronically stimulated desorption (e.g., electron-stimulated desorption and/or photon-stimulated desorption). If this is the case, a possible “size effect” may be operative, in which desorbed neutral K atoms are somewhat more energetic than desorbed Na. In such desorption processes a low-energy component may be generated by scattering of desorbing atoms in the porous regolith; thermal desorption can also generate low-energy atoms. The data further indicate that thermal desorption should be rapid in the equatorial regions of Mercury, possibly depleting this region of alkalis, whereas thermal desorption should be less efficient on the Moon. Surface charging may be important at the surface of the Moon, by accelerating the solar electrons to energies above the threshold for initiating alkali desorption. Suggestions are made for future laboratory work.

[1]  S. Stern,et al.  A Spectroscopic Survey of Metallic Species Abundances in the Lunar Atmosphere , 1996 .

[2]  H. Freund,et al.  Photoinduced processes on alkali covered surfaces: NO desorption from , 1997 .

[3]  Y. Kuznetsov,et al.  Electron-stimulated desorption of potassium and cesium atoms from oxidized molybdenum surfaces , 1997 .

[4]  Y. Kuznetsov,et al.  Desorption stimulated by electronic excitations , 1989 .

[5]  T. Madey Electron- and Photon-Stimulated Desorption: Probes of Structure and Bonding at Surfaces , 1986, Science.

[6]  Robert E. Johnson Energetic Charged-Particle Interactions with Atmospheres and Surfaces , 1990 .

[7]  J. Malherbe,et al.  Preferential sputtering of oxides: A comparison of model predictions with experimental data , 1986 .

[8]  D. Mckay,et al.  Discovery of Vapor Deposits in the Lunar Regolith , 1993, Science.

[9]  D. Hunten,et al.  Origin and character of the lunar and mercurian atmospheres , 1997 .

[10]  T. Madey,et al.  Electron beam damage in Auger electron spectroscopy , 1981 .

[11]  D. M. Zirl,et al.  Structure of sodium aluminosilicate glass surfaces , 1992 .

[12]  G. Battaglin,et al.  Alkali migration in ion irradiated glasses , 1984 .

[13]  M. Vollmer,et al.  Metal particles on surfaces-desorption, optical spectra, and laser-induced size manipulation , 1990 .

[14]  B. Hellsing,et al.  Photostimulated desorption of metal adatoms: potassium on graphite , 1994 .

[15]  F. Michel Solar wind interaction with planetary atmospheres , 1971 .

[16]  T. Madey,et al.  Desorption Induced by Electronic Transitions: Basic Principles and Mechanisms , 1991 .

[17]  G. W. Arnold Alkali depletion and ion beam mixing in glasses , 1984 .

[18]  A. Potter,et al.  Variation of sodium on mercury with solar radiation pressure , 1987 .

[19]  Expected extreme ultraviolet spectrum of the lunar surface , 1991 .

[20]  C. Noguera Physics and Chemistry at Oxide Surfaces: Contents , 1996 .

[21]  W. Smyth Nature and variability of Mercury's sodium atmosphere , 1986, Nature.

[22]  W. Feldman,et al.  Variation of lunar sodium emission intensity with phase angle (Paper 94GL01702) 2263 , 1994 .

[23]  W. Smyth,et al.  The Sodium and Potassium Atmospheres of the Moon , 1995 .

[24]  W. Ip The atomic sodium exosphere/coma of the Moon , 1991 .

[25]  R. Killen,et al.  Diffusion of Na and K in the uppermost regolith of Mercury , 1993 .

[26]  A. Potter,et al.  Discovery of Sodium and Potassium Vapor in the Atmosphere of the Moon , 1988, Science.

[27]  A. Sprague Mercury's atmospheric bright spots and potassium variations: A possible cause , 1992 .

[28]  R. Wiens,et al.  Sputtering Products of Sodium Sulfate: Implications for Io's Surface and for Sodium-Bearing Molecules in the Io Torus☆ , 1997 .

[29]  A. Potter Chemical sputtering could produce sodium vapor and ice on Mercury , 1995 .

[30]  M. Nastasi,et al.  Ion solid interactions , 1996 .

[31]  T. H. Morgan,et al.  Potassium in the atmosphere of Mercury , 1986 .

[32]  R. Gurney Theory of Electrical Double Layers in Adsorbed Films , 1935 .

[33]  D. M. Zirl,et al.  Structure of Sodium Aluminosilicate Glasses , 1990 .

[34]  Robert E. Johnson,et al.  Lunar surface: Sputtering and secondary ion mass spectrometry , 1991 .

[35]  A. Potter,et al.  Discovery of Sodium in the Atmosphere of Mercury , 1985, Science.

[36]  M. Mendillo,et al.  Simulations of the lunar sodium atmosphere , 1995 .

[37]  A. W. Schardt,et al.  Solar wind and solar energetic particles: Properties and interactions , 1970 .

[38]  A. Benninghoven,et al.  Secondary ion mass spectrometry : SIMS V : proceedings of the fifth international conference, Washington, DC, September 30-October 4, 1985 , 1986 .

[39]  R. Manka,et al.  PLASMA AND POTENTIAL AT THE LUNAR SURFACE , 1973 .

[40]  Irving Langmuir,et al.  VAPOR PRESSURES, EVAPORATION, CONDENSATION AND ADSORPTION , 1932 .

[41]  J. T. Ranney,et al.  The Surface Science of Metal Oxides , 1995 .

[42]  D. Hunten,et al.  Observations of sodium in the tenuous lunar atmosphere , 1988 .

[43]  Y. Kuznetsov,et al.  Electron-stimulated desorption of alkali metal and barium atoms from an oxidized tungsten surface , 1996 .

[44]  A. Potter,et al.  Observations of the lunar sodium exosphere , 1991 .

[45]  Uwe Fink,et al.  Distribution and Abundance of Sodium in Mercury's Atmosphere, 1985–1988 , 1997 .

[46]  B. Hapke On the sputter alteration of regoliths of outer solar system bodies , 1986 .

[47]  Michael Mendillo,et al.  A Picture of the Moon's Atmosphere , 1993, Science.

[48]  Louis J. Lanzerotti,et al.  Ice in the polar regions of the Moon , 1981 .

[49]  W. Ip The sodium exosphere and magnetosphere of Mercury , 1986 .

[50]  R. E. Johnson,et al.  Sputtering of sodium on the planet Mercury , 1986, Nature.

[51]  V. Ageev,et al.  Electron-stimulated alkali metal desorption from the oxygen monolayer-covered tungsten surface , 1988 .

[52]  B. Hayden,et al.  An ellipsometric study of potassium adsorption on TiO2(110) , 1992 .

[53]  Ishida Theory of the alkali-metal chemisorption on metal surfaces. II. , 1988, Physical review. B, Condensed matter.

[54]  Paul H. Holloway,et al.  General model of sodium desorption and diffusion during electron bombardment of glass , 1982 .

[55]  Citrin,et al.  Alkali metal adsorbates on W(110): Ionic, covalent, or metallic? , 1990, Physical review letters.

[56]  Tigran A. Vartanyan,et al.  Photodesorption and work function study of long-living excited electronic states on metal surfaces , 1994 .

[57]  Vollmer,et al.  Desorption stimulated by laser-induced surface-plasmon excitation. , 1988, Physical review letters.

[58]  J. Günster,et al.  Cs adsorption on oxide films (Al2O3, MgO, SiO2) , 1997 .

[59]  R. Souda,et al.  Low energy D+ scattering from clean and alkalated TiO2(110) surfaces , 1993 .

[60]  Prabhakaran,et al.  Alkali-metal-to-substrate charge transfer in TiO2(100)c(2 x 2)K. , 1992, Physical review. B, Condensed matter.

[61]  J. Benson Direct measurement of the plasma screening length and surface potential near the lunar terminator , 1977 .

[62]  M. Mendillo,et al.  Constraints on the origin of the Moon's atmosphere from observations during a lunar eclipse , 1995, Nature.

[63]  M. Gillan,et al.  The structure and dynamics of sodium disilicate glass by molecular dynamics simulation , 1995 .

[64]  A. Potter,et al.  Extended sodium exosphere of the Moon , 1988 .

[65]  S. Krimigis,et al.  Magnetosphere, Exosphere, and Surface of Mercury , 1987 .

[66]  Charles T. Campbell,et al.  Ultrathin metal films and particles on oxide surfaces: structural, electronic and chemisorptive properties , 1997 .

[67]  Binder,et al.  Cooling-rate effects in amorphous silica: A computer-simulation study. , 1996, Physical review. B, Condensed matter.

[68]  D. Hunten,et al.  The sodium and potassium atmosphere of the moon and its interaction with the surface , 1992 .

[69]  C. Campbell,et al.  Cesium adsorption on TiO 2 (110) , 1997 .

[70]  J. Yates 8. The Thermal Desorption of Adsorbed Species , 1985 .

[71]  P. Feibelman,et al.  Ion desorption by core-hole Auger decay , 1978 .

[72]  M. Kuhn,et al.  Interaction of Silver, Cesium, and Zinc with Alumina Surfaces: Thermal Desorption and Photoemission Studies , 1996 .

[73]  M. Bäumer,et al.  Adsorption on a polar oxide surface: O2, C2H4 and Na on Cr2O3(0001)/Cr(110) , 1996 .

[74]  Hiroshi Onishi,et al.  Adsorption of Na atoms and oxygen-containing molecules on MgO(100) and (111) surfaces , 1987 .

[75]  D. Goodman,et al.  New approach to the preparation of ultrathin silicon dioxide films at low temperatures , 1992 .

[76]  P. Holloway,et al.  Mechanisms of electron stimulated desorption from soda–silica glass surfaces , 1984 .

[77]  David J. McComas,et al.  Lunar surface composition and solar wind‐Induced secondary ion mass spectrometry , 1991 .

[78]  D. Menzel Thirty years of MGR: How it came about, and what came of it , 1995 .

[79]  P. Haff,et al.  Ring and plasma - The enigmae of Enceladus , 1983 .

[80]  B. Hellsing,et al.  PHOTOINDUCED DESORPTION OF POTASSIUM ATOMS FROM A TWO DIMENSIONAL OVERLAYER ON GRAPHITE , 1997 .

[81]  T. Madey,et al.  Electron stimulated desorption of alkali metal ions and atoms: Local surface field relaxation , 1995 .

[82]  T. H. Morgan,et al.  Limits to the lunar atmosphere , 1991 .

[83]  X.-L. Zhou,et al.  Photochemistry at adsorbate/metal interfaces , 1991 .

[84]  W. Ip On the surface sputtering effects of magnetospheric charged particles at Mercury , 1993 .

[85]  Stephen H. Garofalini,et al.  Onset of alkali adsorption on the vitreous silica surface , 1988 .

[86]  M. Gillan,et al.  Molecular dynamics simulation of alkali-metal diffusion in alkali-metal disilicate glasses , 1997 .