MUBs inequivalence and affine planes

There are fairly large families of unitarily inequivalent complete sets of N+1 mutually unbiased bases (MUBs) in C^N for various prime powers N. The number of such sets is not bounded above by any polynomial as a function of N. While it is standard that there is a superficial similarity between complete sets of MUBs and finite affine planes, there is an intimate relationship between these large families and affine planes. This note briefly summarizes "old" results that do not appear to be well-known concerning known families of complete sets of MUBs and their associated planes.

[1]  P. Oscar Boykin,et al.  A New Proof for the Existence of Mutually Unbiased Bases , 2002, Algorithmica.

[2]  W. Kantor,et al.  Symplectic semifield planes and ℤ₄–linear codes , 2003 .

[3]  William O. Alltop,et al.  Complex sequences with low periodic correlations (Corresp.) , 1980, IEEE Trans. Inf. Theory.

[4]  J. Tits Ovoßdes et Groupes de Suzuki , 1962 .

[6]  A. Calderbank,et al.  Z4‐Kerdock Codes, Orthogonal Spreads, and Extremal Euclidean Line‐Sets , 1997 .

[7]  P. Oscar Boykin,et al.  Real Mutually Unbiased Bases , 2005 .

[8]  Robert S. Coulter,et al.  Planar Functions and Planes of Lenz-Barlotti Class II , 1997, Des. Codes Cryptogr..

[9]  H. König Isometric imbeddings of Euclidean spaces into finite dimensional $l_p$-spaces , 1995 .

[10]  William M. Kantor,et al.  Commutative semifields and symplectic spreads , 2003 .

[11]  Michael J. Ganley,et al.  Central Weak Nucleus Semifields , 1981, Eur. J. Comb..

[12]  Tim Penttila,et al.  Ovoids of Parabolic Spaces , 2000 .

[13]  William O. Alltop,et al.  Complex sequences with low periodic correlations , 1980 .

[14]  A. Adrian Albert,et al.  Generalized twisted fields. , 1961 .

[15]  W. Wootters A Wigner-function formulation of finite-state quantum mechanics , 1987 .

[16]  I. D. Ivonovic Geometrical description of quantal state determination , 1981 .

[17]  Wen-Ching Li Reed Muller codes and symplectic geometry , 2007 .

[19]  Stephen D. Cohen,et al.  Commutative semifields, two dimensional over their middle nuclei , 1982 .

[20]  Cunsheng Ding,et al.  A family of skew Hadamard difference sets , 2006, J. Comb. Theory, Ser. A.

[21]  C. Ding,et al.  Note A family of skew Hadamard difference sets , 2006 .

[22]  W. Kantor,et al.  Nearly flag-transitive affine planes , 2010 .

[23]  W. Kantor Projective Planes of Order q whose Collineation Groups have Order q2 , 1994 .

[24]  Note on Lie algebras, finite groups and finite geometries , 1996 .

[25]  William M. Kantor,et al.  Spreads, Translation Planes and Kerdock Sets. I , 1982 .

[26]  A. J. Scott,et al.  Weighted complex projective 2-designs from bases : Optimal state determination by orthogonal measurements , 2007, quant-ph/0703025.

[27]  W. Kantor Ovoids and Translation Planes , 1982, Canadian Journal of Mathematics.

[28]  G. Lunardon,et al.  Symplectic semifield spreads of PG(5, q) and the veronese surface , 2011 .

[29]  J. Seidel,et al.  BOUNDS FOR SYSTEMS OF LINES, AND JACOBI POLYNOMIALS , 1975 .

[30]  John Bamberg,et al.  Symplectic Spreads , 2004, Des. Codes Cryptogr..

[31]  T. Strohmer,et al.  On the design of optimal spreading sequences for CDMA systems , 2002, Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002..

[32]  W. Wootters,et al.  Optimal state-determination by mutually unbiased measurements , 1989 .

[33]  Claude Carlet,et al.  Classes of Quadratic APN Trinomials and Hexanomials and Related Structures , 2008, IEEE Transactions on Information Theory.

[34]  Joseph A. Thas,et al.  Spreads and ovoids in finite generalized quadrangles , 1994 .

[35]  William M. KAl'iTOR Codes , quadratic forms and finite geometries , 1995 .

[36]  Jürgen Bierbrauer Commutative semifields from projection mappings , 2011, Des. Codes Cryptogr..

[37]  William M. Kantor,et al.  New Flag-Transitive Affine Planes of Even Order , 1996, J. Comb. Theory, Ser. A.

[38]  Zhengbang Zha,et al.  New families of perfect nonlinear polynomial functions , 2009 .

[39]  P. Cameron FINITE GROUPS AND FINITE GEOMETRIES (Cambridge Tracts in Mathematics, 78) , 1982 .

[40]  J. J. Seidel,et al.  Harmonics and combinatorics , 1984 .

[41]  R. Howe,et al.  Nice error bases, mutually unbiased bases, induced representations, the Heisenberg group and finite geometries , 2005 .

[42]  W. Kantor Quaternionic line-sets and quaternionic Kerdock codes , 1995 .

[43]  Aidan Roy,et al.  Equiangular lines, mutually unbiased bases, and spin models , 2009, Eur. J. Comb..

[44]  P. Oscar Boykin,et al.  Mutually unbiased bases and orthogonal decompositions of Lie algebras , 2005, Quantum Inf. Comput..

[45]  R. Dye Partitions and their stabilizers for line complexes and quadrics , 1977 .

[46]  Tor Helleseth,et al.  New commutative semifields defined by new PN multinomials , 2011, Cryptography and Communications.