Hierarchical recursive least squares parameter estimation of non-uniformly sampled Hammerstein nonlinear systems based on Kalman filter

Abstract This paper focuses on parameter estimation problems for non-uniformly sampled Hammerstein nonlinear systems. By combining the lifting technique and state space transformation, we derive a nonlinear regression identification model with different input and output updating rates. Furthermore, the unmeasurable state vector is estimated by Kalman filter, and by using the hierarchical identification principle, we develop a hierarchical recursive least squares algorithm for estimating the unknown parameters of the identification model. Finally, illustrative examples are given to indicate that the proposed algorithm is effective.

[1]  Jing Chen,et al.  Parameter Identification Methods for an Additive Nonlinear System , 2014, Circuits Syst. Signal Process..

[2]  Jozef Vörös,et al.  Iterative identification of nonlinear dynamic systems with output backlash using three-block cascade models , 2015 .

[3]  Feng Ding,et al.  Novel data filtering based parameter identification for multiple-input multiple-output systems using the auxiliary model , 2016, Autom..

[4]  Feng Ding,et al.  Recursive least squares algorithm and gradient algorithm for Hammerstein–Wiener systems using the data filtering , 2016 .

[5]  Huazhen Fang,et al.  Kalman filter-based identification for systems with randomly missing measurements in a network environment , 2010, Int. J. Control.

[6]  Jing Lu,et al.  Least squares based iterative identification for a class of multirate systems , 2010, Autom..

[7]  Huizhong Yang,et al.  Modelling and identification for non-uniformly periodically sampled-data systems , 2010 .

[8]  Feng Ding,et al.  Identification of Hammerstein nonlinear ARMAX systems , 2005, Autom..

[9]  F. Ding,et al.  Filtering-based iterative identification for multivariable systems , 2016 .

[10]  Naveed Ishtiaq Chaudhary,et al.  Identification of Hammerstein nonlinear ARMAX systems using nonlinear adaptive algorithms , 2015 .

[11]  Feng Yu,et al.  Recursive parameter identification of Hammerstein-Wiener systems with measurement noise , 2014, Signal Process..

[12]  Xiangli Li,et al.  Gradient-Based Iterative Identification for Wiener Nonlinear Dynamic Systems with Moving Average Noises , 2015, Algorithms.

[13]  Feng Ding,et al.  An efficient hierarchical identification method for general dual-rate sampled-data systems , 2014, Autom..

[14]  Xiangli Li,et al.  Multi-innovation stochastic gradient method for harmonic modelling of power signals , 2016, IET Signal Process..

[15]  Er-Wei Bai,et al.  Identification of a modified Wiener-Hammerstein system and its application in electrically stimulated paralyzed skeletal muscle modeling , 2009, Autom..

[16]  Feng Ding,et al.  Reconstruction of continuous-time systems from their non-uniformly sampled discrete-time systems , 2009, Autom..

[17]  Wei Zhang,et al.  Improved least squares identification algorithm for multivariable Hammerstein systems , 2015, J. Frankl. Inst..

[18]  I. Škrjanc,et al.  Continuous-Time Wiener-Model Predictive Control of a pH Process , 2007, 2007 29th International Conference on Information Technology Interfaces.

[19]  Feng Ding,et al.  Recursive Least Squares Parameter Estimation for a Class of Output Nonlinear Systems Based on the Model Decomposition , 2016, Circuits Syst. Signal Process..

[20]  Feng Ding,et al.  Auxiliary model-based least-squares identification methods for Hammerstein output-error systems , 2007, Syst. Control. Lett..

[21]  J. Vörös Identification of nonlinear cascade systems with output hysteresis based on the key term separation principle , 2015 .

[22]  Feng Ding,et al.  The recursive least squares identification algorithm for a class of Wiener nonlinear systems , 2016, J. Frankl. Inst..

[23]  Vojislav Z. Filipovic,et al.  Consistency of the robust recursive Hammerstein model identification algorithm , 2015, J. Frankl. Inst..

[24]  Feng Ding,et al.  Kalman state filtering based least squares iterative parameter estimation for observer canonical state space systems using decomposition , 2016, J. Comput. Appl. Math..

[25]  Huizhong Yang,et al.  Gradient-based iterative identification for nonuniform sampling output error systems , 2011 .

[26]  Dong Ye,et al.  Robust Filtering for a Class of Networked Nonlinear Systems With Switching Communication Channels , 2017, IEEE Transactions on Cybernetics.

[27]  Jozef Vörös,et al.  Identification of nonlinear dynamic systems with input saturation and output backlash using three-block cascade models , 2014, J. Frankl. Inst..

[28]  F. Ding,et al.  An auxiliary model based on a recursive least-squares parameter estimation algorithm for non-uniformly sampled multirate systems , 2009 .

[29]  Feng Ding,et al.  Multirate crosstalk identification in xDSL systems , 2006, IEEE Transactions on Communications.

[30]  James B. Rawlings,et al.  Particle filtering and moving horizon estimation , 2006, Comput. Chem. Eng..