On a triangulated category which behaves like a cluster category of infinite Dynkin type, and the relation to triangulations of the infinity-gon

This paper investigates a certain 2-Calabi-Yau triangulated category D whose Auslander-Reiten quiver is ZA_{\infty}. We show that the cluster tilting subcategories of D form a so-called cluster structure, and we classify these subcategories in terms of what one may call `triangulations of the infinity-gon'. This is reminiscent of the cluster category C of type A_n which is a 2-Calabi-Yau triangulated category whose Auslander-Reiten quiver is a quotient of ZA_n. The cluster tilting subcategories of C form a cluster structure and they are classified in terms of triangulations of the (n+3)-gon. The category D behaves like a `cluster category of type A_{\infty}'.

[1]  B. Keller,et al.  The Hall algebra of a spherical object , 2008, 0810.5546.

[2]  I. Reiten,et al.  Cluster structures for 2-Calabi–Yau categories and unipotent groups , 2007, Compositio Mathematica.

[3]  A. B. Buan,et al.  Cluster structures from 2-Calabi–Yau categories with loops , 2008, 0810.3132.

[4]  Y. Yoshino,et al.  Mutation in triangulated categories and rigid Cohen–Macaulay modules , 2006, math/0607736.

[5]  Bin Zhu Generalized cluster complexes via quiver representations , 2006, math/0607155.

[6]  H. Thomas Defining an m-cluster category , 2006, math/0607173.

[7]  S. Koenig,et al.  From triangulated categories to abelian categories: cluster tilting in a general framework , 2006, math/0605100.

[8]  I. Reiten,et al.  Cluster-tilted algebras are Gorenstein and stably Calabi–Yau , 2005, math/0512471.

[9]  B. Keller On triangulated orbit categories , 2005, Documenta Mathematica.

[10]  O. Iyama Auslander correspondence , 2004, math/0411631.

[11]  Osamu Iyama,et al.  Higher-dimensional Auslander–Reiten theory on maximal orthogonal subcategories , 2004, math/0407052.

[12]  Peter Jørgensen Auslander-Reiten theory over topological spaces , 2004 .

[13]  I. Reiten,et al.  Tilting theory and cluster combinatorics , 2004, math/0402054.

[14]  R. Schiffler,et al.  Quivers with relations arising from clusters $(A_n$ case) , 2004, math/0401316.

[15]  S. Fomin,et al.  Cluster algebras II: Finite type classification , 2002, math/0208229.

[16]  Idun Reiten,et al.  Noetherian hereditary abelian categories satisfying Serre duality , 2002 .