On a triangulated category which behaves like a cluster category of infinite Dynkin type, and the relation to triangulations of the infinity-gon
暂无分享,去创建一个
[1] B. Keller,et al. The Hall algebra of a spherical object , 2008, 0810.5546.
[2] I. Reiten,et al. Cluster structures for 2-Calabi–Yau categories and unipotent groups , 2007, Compositio Mathematica.
[3] A. B. Buan,et al. Cluster structures from 2-Calabi–Yau categories with loops , 2008, 0810.3132.
[4] Y. Yoshino,et al. Mutation in triangulated categories and rigid Cohen–Macaulay modules , 2006, math/0607736.
[5] Bin Zhu. Generalized cluster complexes via quiver representations , 2006, math/0607155.
[6] H. Thomas. Defining an m-cluster category , 2006, math/0607173.
[7] S. Koenig,et al. From triangulated categories to abelian categories: cluster tilting in a general framework , 2006, math/0605100.
[8] I. Reiten,et al. Cluster-tilted algebras are Gorenstein and stably Calabi–Yau , 2005, math/0512471.
[9] B. Keller. On triangulated orbit categories , 2005, Documenta Mathematica.
[10] O. Iyama. Auslander correspondence , 2004, math/0411631.
[11] Osamu Iyama,et al. Higher-dimensional Auslander–Reiten theory on maximal orthogonal subcategories , 2004, math/0407052.
[12] Peter Jørgensen. Auslander-Reiten theory over topological spaces , 2004 .
[13] I. Reiten,et al. Tilting theory and cluster combinatorics , 2004, math/0402054.
[14] R. Schiffler,et al. Quivers with relations arising from clusters $(A_n$ case) , 2004, math/0401316.
[15] S. Fomin,et al. Cluster algebras II: Finite type classification , 2002, math/0208229.
[16] Idun Reiten,et al. Noetherian hereditary abelian categories satisfying Serre duality , 2002 .