Incremental Volume Rendering Algorithm for Interactive 3D Ultrasound Imaging

This paper describes a medical 3D ultrasound imaging system that incrementally acquires and visualizes a 3D volume from a series of 2D images. The system acquires the image from a conventional B-mode 2D echography scanner, whose scanhead is attached to a mechanical tracking arm with three degrees of freedom. It reconstructs a stream of 2D images with their locations and orientations into a 3D array of regularly spaced samples, to be rendered by a modified front-to-back image-order volume rendering algorithm. Visualization is done so that each incoming 2D image slice promptly affects the rendering result. This paper concentrates on the incremental volume rendering algorithm that takes advantage of the incremental scanning to reduce image generation time per each input image slice. We describe a new fast ray-clipping scheme called D-buffer algorithm that is based on the Z-buffer algorithm. It is followed by another speedup scheme called hierarchical ray caching, and a method to efficiently integrate geometric objects with volume data in image space.

[1]  D. D. Bono,et al.  CARDIOLOGY , 1990, The Lancet.

[2]  G T Herman,et al.  Dynamic three-dimensional reconstruction of the left ventricle from two-dimensional echocardiograms. , 1986, Journal of the American College of Cardiology.

[3]  P. E. Nikravesh,et al.  Computerized Three-Dimensional Finite Element Reconstruction of the Left Ventricle from Cross-Sectional Echocardiograms , 1984 .

[4]  Paolo Sabella,et al.  A rendering algorithm for visualizing 3D scalar fields , 1988, SIGGRAPH.

[5]  Marc D Weinshenker,et al.  Explososcan: a parallel processing technique for high speed ultrasound imaging with linear phased arrays. , 1984 .

[6]  Tatsuo Miyazawa High-speed integrated rendering algorithm for interpreting multiple-variable 3-D data , 1991, Electronic Imaging.

[7]  Andrew S. Glassner,et al.  Graphics Gems , 1990 .

[8]  CarpenterLoren The A -buffer, an antialiased hidden surface method , 1984 .

[9]  Loren C. Carpenter,et al.  The A -buffer, an antialiased hidden surface method , 1984, SIGGRAPH.

[10]  J. Challinger,et al.  Direct volume rendering of curvilinear volumes , 1990, VVS.

[11]  David S. Ebert,et al.  Rendering and animation of gaseous phenomena by combining fast volume and scanline A-buffer techniques , 1990, SIGGRAPH.

[12]  Jay Beck,et al.  Generalized two- and three-dimensional clipping , 1978, Comput. Graph..

[13]  Shohei Nakamura,et al.  Three-Dimensional Digital Display of Ultrasonograms , 1984, IEEE Computer Graphics and Applications.

[14]  Hooshang Kangarloo,et al.  Three-Dimensional Reconstruction Of Ultrasound Images , 1989, Medical Imaging.

[15]  Craig Upson,et al.  V-buffer: visible volume rendering , 1988, SIGGRAPH.

[16]  J F Brinkley,et al.  Ultrasonic three-dimensional imaging and volume from a series of arbitrary sector scans. , 1978, Ultrasound in medicine & biology.

[17]  Marc Levoy,et al.  A hybrid ray tracer for rendering polygon and volume data , 1990, IEEE Computer Graphics and Applications.

[18]  FuchsHenry,et al.  Pixel-planes 5: a heterogeneous multiprocessor graphics system using processor-enhanced memories , 1989 .

[19]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[20]  Henry Fuchs,et al.  Pixel-planes 5: a heterogeneous multiprocessor graphics system using processor-enhanced memories , 1989, SIGGRAPH.

[21]  N. Nanda,et al.  Three-dimensional reconstruction of echo-cardiographic images using the rotation method. , 1982, Ultrasound in medicine & biology.

[22]  Judy Challinger,et al.  Direct volume rendering of curvilinear volumes , 1990, SIGGRAPH 1990.

[23]  K. Bala Ray Tracing , 1988 .

[24]  L S Wann,et al.  An analysis of three-dimensional reconstructive echocardiography. , 1984, Ultrasound in medicine & biology.

[25]  Peter Shirley,et al.  A polygonal approximation to direct scalar volume rendering , 1990, SIGGRAPH 1990.

[26]  Peter R. Atherton A method of interactive visualization of CAD surface models on a color video display , 1981, SIGGRAPH '81.

[27]  Christian Barillot,et al.  Multidimensional ultrasonic imaging for cardiology , 1988, Proc. IEEE.

[28]  Kevin L. Novins,et al.  An efficient method for volume rendering using perspective projection , 1990, VVS.

[29]  SabellaPaolo A rendering algorithm for visualizing 3D scalar fields , 1988 .

[30]  Henry Fuchs,et al.  Incremental 3D ultrasound imaging from a 2D scanner , 1990, [1990] Proceedings of the First Conference on Visualization in Biomedical Computing.

[31]  Henry Fuchs,et al.  3D ultrasound display using optical tracking , 1990, [1990] Proceedings of the First Conference on Visualization in Biomedical Computing.

[32]  Thierry Priol,et al.  Ray tracing on distributed memory parallel computers : strategies for distributing computations and data , 1990 .

[33]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[34]  Michael P. Garrity Raytracing irregular volume data , 1990, VVS.

[35]  Michael P. Garrity Raytracing irregular volume data , 1990, SIGGRAPH 1990.

[36]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[37]  Henry Neeman A decomposition algorithm for visualizing irregular grids , 1990, SIGGRAPH 1990.