A machine learning approach for predicting methionine oxidation sites

[1]  Yuhai Wu,et al.  Statistical Learning Theory , 2021, Technometrics.

[2]  Martin Krzywinski,et al.  Points of Significance: Classification and regression trees , 2017, Nature Methods.

[3]  Francisco J. Veredas,et al.  Prediction of Protein Oxidation Sites , 2017, IWANN.

[4]  Francisco R. Cantón,et al.  Methionine residues around phosphorylation sites are preferentially oxidized in vivo under stress conditions , 2017, Scientific Reports.

[5]  R. Maier,et al.  Helicobacter Catalase Devoid of Catalytic Activity Protects the Bacterium against Oxidative Stress*♦ , 2016, The Journal of Biological Chemistry.

[6]  Francisco R. Cantón,et al.  Sulphur Atoms from Methionines Interacting with Aromatic Residues Are Less Prone to Oxidation , 2015, Scientific Reports.

[7]  Hyunjin Park,et al.  Corrigendum: Sound Packing DNA: packing open circular DNA with low-intensity ultrasound , 2015, Scientific Reports.

[8]  C. Scazzocchio,et al.  Reversible Oxidation of a Conserved Methionine in the Nuclear Export Sequence Determines Subcellular Distribution and Activity of the Fungal Nitrate Regulator NirA , 2015, PLoS genetics.

[9]  Max Kuhn,et al.  caret: Classification and Regression Training , 2015 .

[10]  Subhasis Mukhopadhyay,et al.  A Grammar Inference Approach for Predicting Kinase Specific Phosphorylation Sites , 2015, PloS one.

[11]  Olav K. Lyngberg,et al.  Modeling the oxidation of methionine residues by peroxides in proteins. , 2015, Journal of pharmaceutical sciences.

[12]  P. Willems,et al.  Protein Methionine Sulfoxide Dynamics in Arabidopsis thaliana under Oxidative Stress , 2015, Molecular & Cellular Proteomics.

[13]  N. B. Sepuri,et al.  Methionine sulfoxide reductase 2 reversibly regulates Mge1, a cochaperone of mitochondrial Hsp70, during oxidative stress , 2015, Molecular biology of the cell.

[14]  Bin Zhang,et al.  PhosphoSitePlus, 2014: mutations, PTMs and recalibrations , 2014, Nucleic Acids Res..

[15]  J. Aledo Life-history Constraints on the Mechanisms that Control the Rate of ROS Production , 2014, Current genomics.

[16]  N. Chandel,et al.  ROS Function in Redox Signaling and Oxidative Stress , 2014, Current Biology.

[17]  Hwa-young Kim The methionine sulfoxide reduction system: selenium utilization and methionine sulfoxide reductase enzymes and their functions. , 2013, Antioxidants & redox signaling.

[18]  V. Gladyshev,et al.  MsrB1 and MICALs regulate actin assembly and macrophage function via reversible stereoselective methionine oxidation. , 2013, Molecular cell.

[19]  J. Peschek,et al.  Methionine oxidation activates a transcription factor in response to oxidative stress , 2013, Proceedings of the National Academy of Sciences.

[20]  Max Kuhn,et al.  Applied Predictive Modeling , 2013 .

[21]  F. Van Breusegem,et al.  Plant proteins under oxidative attack , 2013, Proteomics.

[22]  P. Eaton,et al.  Hydrogen peroxide sensing and signaling by protein kinases in the cardiovascular system. , 2013, Antioxidants & redox signaling.

[23]  Kathryn S Lilley,et al.  Structural and functional characteristics of cGMP-dependent methionine oxidation in Arabidopsis thaliana proteins , 2013, Cell Communication and Signaling.

[24]  H. M. Cochemé,et al.  Mitochondrial redox signalling at a glance , 2012, Journal of Cell Science.

[25]  José Manuel Benítez,et al.  Neural Networks in R Using the Stuttgart Neural Network Simulator: RSNNS , 2012 .

[26]  Anthony J. Kusalik,et al.  Computational prediction of eukaryotic phosphorylation sites , 2011, Bioinform..

[27]  Christodoulos A. Floudas,et al.  Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database , 2011, Scientific reports.

[28]  R. Aebersold,et al.  A High-Confidence Human Plasma Proteome Reference Set with Estimated Concentrations in PeptideAtlas* , 2011, Molecular & Cellular Proteomics.

[29]  F. Rousseau,et al.  Redox Proteomics of Protein-bound Methionine Oxidation* , 2011, Molecular & Cellular Proteomics.

[30]  T. Squier,et al.  Thioredoxin-dependent redox regulation of cellular signaling and stress response through reversible oxidation of methionines. , 2011, Molecular bioSystems.

[31]  Steven C. Huber,et al.  Oxidation of an Adjacent Methionine Residue Inhibits Regulatory Seryl-Phosphorylation of Pyruvate Dehydrogenase: , 2009 .

[32]  S. Huber,et al.  Coupling oxidative signals to protein phosphorylation via methionine oxidation in Arabidopsis , 2009, The Biochemical journal.

[33]  R. Levine,et al.  Methionine in proteins defends against oxidative stress , 2009, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[34]  Yu Xue,et al.  GPS 2.0, a Tool to Predict Kinase-specific Phosphorylation Sites in Hierarchy *S , 2008, Molecular & Cellular Proteomics.

[35]  Mark E. Anderson,et al.  A Dynamic Pathway for Calcium-Independent Activation of CaMKII by Methionine Oxidation , 2008, Cell.

[36]  B. Halliwell,et al.  Biochemistry of oxidative stress. , 2007, Biochemical Society transactions.

[37]  Ramón Díaz-Uriarte,et al.  Gene selection and classification of microarray data using random forest , 2006, BMC Bioinformatics.

[38]  A. Zeileis Econometric Computing with HC and HAC Covariance Matrix Estimators , 2004 .

[39]  Kurt Hornik,et al.  kernlab - An S4 Package for Kernel Methods in R , 2004 .

[40]  Chris H. Q. Ding,et al.  Minimum redundancy feature selection from microarray gene expression data , 2003, Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003.

[41]  Oliviero Carugo,et al.  DPX: for the analysis of the protein core , 2003, Bioinform..

[42]  N. Brot,et al.  Oxidative Regulation of Large Conductance Calcium-Activated Potassium Channels , 2001, The Journal of general physiology.

[43]  F. Tjerneld,et al.  The chaperone-like activity of a small heat shock protein is lost after sulfoxidation of conserved methionines in a surface-exposed amphipathic alpha-helix. , 2001, Biochimica et biophysica acta.

[44]  Elias S. J. Arnér,et al.  Physiological functions of thioredoxin and thioredoxin reductase. , 2000, European journal of biochemistry.

[45]  J. Moss,et al.  Oxidation of either methionine 351 or methionine 358 in alpha 1-antitrypsin causes loss of anti-neutrophil elastase activity. , 2000, The Journal of biological chemistry.

[46]  E. Stadtman,et al.  Methionine residues as endogenous antioxidants in proteins. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[47]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[48]  R. Truscott,et al.  Oxidative changes in human lens proteins during senile nuclear cataract formation. , 1977, Biochimica et biophysica acta.

[49]  T. Lo The isolation and characterization of methionine sulfoxide analogues of alpha- and beta-melanocyte-stimulating hormones from bovine and equine pituitary glands. , 1962, Journal of biochemistry.

[50]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[51]  Andy Liaw,et al.  Classification and Regression by randomForest , 2007 .

[52]  L. Breiman Random Forests , 2001, Machine Learning.

[53]  Yoshua Bengio,et al.  Pattern Recognition and Neural Networks , 1995 .