Thermodynamic stability of water molecules in the bacteriorhodopsin proton channel: a molecular dynamics free energy perturbation study.

[1]  Y. Beppu Theoretical Study of Color Control Mechanism in Retinal Proteins. II. Orientational Effects of Aromatic Amino Acid Residues upon Opsin Shift , 1997 .

[2]  R. Wade,et al.  Thermodynamics of water mediating protein-ligand interactions in cytochrome P450cam: a molecular dynamics study. , 1995, Biophysical journal.

[3]  B. Halle,et al.  Residence times of the buried water molecules in bovine pancreatic trypsin inhibitor and its G36S mutant. , 1995, Biochemistry.

[4]  O. Berger,et al.  Structure and fluctuations of bacteriorhodopsin in the purple membrane: a molecular dynamics study. , 1995, Journal of molecular biology.

[5]  Jeremy C. Smith,et al.  Functional interactions in bacteriorhodopsin: a theoretical analysis of retinal hydrogen bonding with water. , 1995, Biophysical journal.

[6]  H. Khorana,et al.  Detection of a water molecule in the active-site of bacteriorhodopsin: hydrogen bonding changes during the primary photoreaction. , 1994, Biochemistry.

[7]  M Karplus,et al.  Free energy simulations: The meaning of the individual contributions from a component analysis , 1994, Proteins.

[8]  J. Thornton,et al.  Buried waters and internal cavities in monomeric proteins , 1994, Protein science : a publication of the Protein Society.

[9]  T. Straatsma,et al.  Separation‐shifted scaling, a new scaling method for Lennard‐Jones interactions in thermodynamic integration , 1994 .

[10]  D. Beglov,et al.  Finite representation of an infinite bulk system: Solvent boundary potential for computer simulations , 1994 .

[11]  T. Kakitani,et al.  THEORETICAL STUDY OF COLOR CONTROL MECHANISM IN RETINAL PROTEINS. I. ROLE OF THE TRYPTOPHAN RESIDUE, TYROSINE RESIDUE and WATER MOLECULE , 1994 .

[12]  B. Honig,et al.  Environmental effects on the protonation states of active site residues in bacteriorhodopsin. , 1994, Biophysical journal.

[13]  R. Callender,et al.  Evidence for a bound water molecule next to the retinal Schiff base in bacteriorhodopsin and rhodopsin: a resonance Raman study of the Schiff base hydrogen/deuterium exchange. , 1994, Biophysical journal.

[14]  K Schulten,et al.  Molecular dynamics study of bacteriorhodopsin and artificial pigments. , 1994, Biochemistry.

[15]  J. Lanyi,et al.  Interaction of aspartate-85 with a water molecule and the protonated Schiff base in the L intermediate of bacteriorhodopsin: a Fourier-transform infrared spectroscopic study. , 1994, Biochemistry.

[16]  Peter A. Kollman,et al.  FREE ENERGY CALCULATIONS : APPLICATIONS TO CHEMICAL AND BIOCHEMICAL PHENOMENA , 1993 .

[17]  M. El-Sayed,et al.  Protein Catalysis of the Retinal Subpicosecond Photoisomerization in the Primary Process of Bacteriorhodopsin Photosynthesis , 1993, Science.

[18]  M. Sheves,et al.  A mechanism for controlling the pKa of the retinal protonated Schiff base in retinal proteins. A study with model compounds , 1993 .

[19]  K. Schulten,et al.  Molecular dynamics study of the proton pump cycle of bacteriorhodopsin. , 1993, Biochemistry.

[20]  M. Gerstein,et al.  Electron diffraction analysis of structural changes in the photocycle of bacteriorhodopsin. , 1993, The EMBO journal.

[21]  F. Tokunaga,et al.  ENERGETICS OF PROTONATION‐DEPROTONATION OF THE CHROMOPHORE IN RETINAL PROTEINS , 1992 .

[22]  Edgar Meyer,et al.  Internal water molecules and H‐bonding in biological macromolecules: A review of structural features with functional implications , 1992, Protein science : a publication of the Protein Society.

[23]  H. Khorana,et al.  Vibrational spectroscopy of bacteriorhodopsin mutants. Evidence that Thr-46 and Thr-89 form part of a transient network of hydrogen bonds. , 1992, The Journal of biological chemistry.

[24]  D. Bashford,et al.  Electrostatic calculations of the pKa values of ionizable groups in bacteriorhodopsin. , 1992, Journal of molecular biology.

[25]  K. Schulten,et al.  STRUCTURE OF BACTERIORHODOPSIN and in situ ISOMERIZATION OF RETINAL: A MOLECULAR DYNAMICS STUDY * , 1991 .

[26]  J. Lanyi,et al.  Water is required for proton transfer from aspartate-96 to the bacteriorhodopsin Schiff base. , 1991, Biochemistry.

[27]  Michael H. Mazor,et al.  A molecular dynamics study of thermodynamic and structural aspects of the hydration of cavities in proteins , 1991, Biopolymers.

[28]  H. Khorana,et al.  Bacteriorhodopsin mutants containing single substitutions of serine or threonine residues are all active in proton translocation. , 1991, The Journal of biological chemistry.

[29]  B. Hess,et al.  Simultaneous monitoring of light-induced changes in protein side-group protonation, chromophore isomerization, and backbone motion of bacteriorhodopsin by time-resolved Fourier-transform infrared spectroscopy. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Michael H. Mazor,et al.  Hydration of cavities in proteins : a molecular dynamics approach , 1990 .

[31]  Richard Henderson,et al.  A model for the structure of bacteriorhodopsin based on high resolution electron cryomicroscopy , 1990 .

[32]  S. O. Smith,et al.  Solid-state 13C and 15N NMR study of the low pH forms of bacteriorhodopsin. , 1990 .

[33]  G Büldt,et al.  Water molecules and exchangeable hydrogen ions at the active centre of bacteriorhodopsin localized by neutron diffraction. Elements of the proton pathway? , 1990, Journal of molecular biology.

[34]  R. Henderson,et al.  Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. , 1990, Journal of molecular biology.

[35]  S. O. Smith,et al.  Solid-state 13C NMR study of tyrosine protonation in dark-adapted bacteriorhodopsin. , 1990, Biochemistry.

[36]  H. Khorana,et al.  Aspartic acid-96 is the internal proton donor in the reprotonation of the Schiff base of bacteriorhodopsin. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[37]  H. Khorana,et al.  Structure-function studies on bacteriorhodopsin. X. Individual substitutions of arginine residues by glutamine affect chromophore formation, photocycle, and proton translocation. , 1989, The Journal of biological chemistry.

[38]  B. Hess,et al.  Role of aspartate-96 in proton translocation by bacteriorhodopsin. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[39]  E. Bamberg,et al.  Aspartic acids 96 and 85 play a central role in the function of bacteriorhodopsin as a proton pump. , 1989, The EMBO journal.

[40]  H. Khorana,et al.  Replacement of aspartic acid-96 by asparagine in bacteriorhodopsin slows both the decay of the M intermediate and the associated proton movement. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[41]  S. O. Smith,et al.  Solid-state 13C NMR of the retinal chromophore in photointermediates of bacteriorhodopsin: characterization of two forms of M. , 1989, Biochemistry.

[42]  H. Khorana,et al.  Vibrational spectroscopy of bacteriorhodopsin mutants: light-driven proton transport involves protonation changes of aspartic acid residues 85, 96, and 212. , 1988, Biochemistry.

[43]  James E. Roberts,et al.  Solid-State NMR Detection of Proton Exchange between the Bacteriorhodopsin Schiff Base and Bulk Water , 1988 .

[44]  H. Khorana,et al.  Aspartic acid substitutions affect proton translocation by bacteriorhodopsin. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[45]  M Karplus,et al.  Polar hydrogen positions in proteins: Empirical energy placement and neutron diffraction comparison , 1988, Proteins.

[46]  M. Karplus,et al.  Proteins: A Theoretical Perspective of Dynamics, Structure, and Thermodynamics , 1988 .

[47]  H. Khorana,et al.  Bacteriorhodopsin mutants containing single tyrosine to phenylalanine substitutions are all active in proton translocation. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Peter A. Kollman,et al.  An Approach to the Application of Free Energy Perturbation Methods Using Molecular Dynamics: Applications to the Transformations of CH3OH → CH3CH3, H3O+ → NH+ 4, Glycine → Alanine, and Alanine → Phenylalanine in Aqueous Solution and t , 1987 .

[49]  G. Zaccai Structure and hydration of purple membranes in different conditions. , 1987, Journal of molecular biology.

[50]  J. Hermans,et al.  The Free Energy of Xenon Binding to Myoglobin from Molecular Dynamics Simulation , 1986 .

[51]  B Hess,et al.  Light-driven protonation changes of internal aspartic acids of bacteriorhodopsin: an investigation by static and time-resolved infrared difference spectroscopy using [4-13C]aspartic acid labeled purple membrane. , 1985, Biochemistry.

[52]  P. Hildebrandt,et al.  Role of water in bacteriorhodopsin's chromophore: resonance Raman study , 1984 .

[53]  S. O. Smith,et al.  Solid-state 13C NMR studies of retinal in bacteriorhodopsin. , 1984, Biochemistry.

[54]  S. O. Smith,et al.  Dark-adapted bacteriorhodopsin contains 13-cis, 15-syn and all-trans, 15-anti retinal Schiff bases. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[55]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[56]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[57]  H. Mckenzie,et al.  Water and proteins. II. The location and dynamics of water in protein systems and its relation to their stability and properties. , 1983, Advances in biophysics.

[58]  R. Callender,et al.  Acid-base equilibrium of the Schiff base in bacteriorhodopsin. , 1982, Biochemistry.

[59]  B. Honig,et al.  On the mechanism of hydrogen-deuterium exchange in bacteriorhodopsin. , 1981, Biophysical journal.

[60]  A. Lewis,et al.  Experimental evidence for secondary protein-chromophore interactions at the Schiff base linkage in bacteriorhodopsin: Molecular mechanism for proton pumping. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[61]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[62]  J. Valleau,et al.  A Monte Carlo method for obtaining the interionic potential of mean force in ionic solution , 1975 .

[63]  D. Oesterhelt,et al.  Functions of a new photoreceptor membrane. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[64]  D. Oesterhelt,et al.  Rhodopsin-like protein from the purple membrane of Halobacterium halobium. , 1971, Nature: New biology.

[65]  L. Onsager Electric Moments of Molecules in Liquids , 1936 .

[66]  J. Kirkwood Statistical Mechanics of Fluid Mixtures , 1935 .