Towards occlusion-aware multifocal displays

The human visual system uses numerous cues for depth perception, including disparity, accommodation, motion parallax and occlusion. It is incumbent upon virtual-reality displays to satisfy these cues to provide an immersive user experience. Multifocal displays, one of the classic approaches to satisfy the accommodation cue, place virtual content at multiple focal planes, each at a different depth. However, the content on focal planes close to the eye do not occlude those farther away; this deteriorates the occlusion cue as well as reduces contrast at depth discontinuities due to leakage of the defocus blur. This paper enables occlusion-aware multifocal displays using a novel ConeTilt operator that provides an additional degree of freedom --- tilting the light cone emitted at each pixel of the display panel. We show that, for scenes with relatively simple occlusion configurations, tilting the light cones provides the same effect as physical occlusion. We demonstrate that ConeTilt can be easily implemented by a phase-only spatial light modulator. Using a lab prototype, we show results that demonstrate the presence of occlusion cues and the increased contrast of the display at depth edges.

[1]  Hiroyuki Ohno,et al.  An optical see-through display for mutual occlusion of real and virtual environments , 2000, Proceedings IEEE and ACM International Symposium on Augmented Reality (ISAR 2000).

[2]  George Drettakis,et al.  Accommodation and Comfort in Head-Mounted Displays , 2018 .

[3]  V. Laude Twisted-nematic liquid-crystal pixelated active lens , 1998 .

[4]  J. Geng Three-dimensional display technologies. , 2013, Advances in optics and photonics.

[5]  Gordon Wetzstein,et al.  Varifocal Occlusion-Capable Optical See-through Augmented Reality Display based on Focus-tunable Optics , 2019, IEEE Transactions on Visualization and Computer Graphics.

[6]  Gordon Wetzstein,et al.  Novel Optical Configurations for Virtual Reality: Evaluating User Preference and Performance with Focus-tunable and Monovision Near-eye Displays , 2016, CHI.

[7]  Douglas Lanman,et al.  DeepFocus: learned image synthesis for computational displays , 2019, ACM Trans. Graph..

[8]  B. V. K. Vijaya Kumar,et al.  Towards multifocal displays with dense focal stacks , 2018, ACM Trans. Graph..

[9]  Katerina Mania,et al.  Near‐Eye Display and Tracking Technologies for Virtual and Augmented Reality , 2019, Comput. Graph. Forum.

[10]  Andreas Georgiou,et al.  Holographic near-eye displays for virtual and augmented reality , 2017, ACM Trans. Graph..

[11]  Kevin J. MacKenzie,et al.  Accommodation to multiple-focal-plane displays: Implications for improving stereoscopic displays and for accommodation control. , 2010, Journal of vision.

[12]  Gordon Wetzstein,et al.  The light field stereoscope , 2015, ACM Trans. Graph..

[13]  S. Serak,et al.  Thin waveplate lenses of switchable focal length--new generation in optics. , 2015, Optics express.

[14]  Rahul Narain,et al.  Blur and the perception of depth at occlusions. , 2016, Journal of vision.

[15]  Douglas Lanman,et al.  Near-eye light field displays , 2013, SIGGRAPH '13.

[16]  Sheng Liu,et al.  An optical see-through head mounted display with addressable focal planes , 2008, 2008 7th IEEE/ACM International Symposium on Mixed and Augmented Reality.

[17]  Gordon Wetzstein,et al.  Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays , 2017, Proceedings of the National Academy of Sciences.

[18]  Pat Hanrahan,et al.  Achieving Near-Correct Focus Cues Using Multiple Image Planes , 2004 .

[19]  Christopher D. Saunter,et al.  Dynamic lens and monovision 3D displays to improve viewer comfort , 2015, Optics express.

[20]  Douglas Lanman,et al.  Focal surface displays , 2017, ACM Trans. Graph..

[21]  James Gao,et al.  High-speed switchable lens enables the development of a volumetric stereoscopic display. , 2009, Optics express.

[22]  Byoungho Lee,et al.  Optimal binary representation via non-convex optimization on tomographic displays. , 2019, Optics express.

[23]  Monika Ritsch-Marte,et al.  Adjustable refractive power from diffractive moiré elements. , 2008, Applied optics.

[24]  James F. O'Brien,et al.  Optimal presentation of imagery with focus cues on multi-plane displays , 2015, ACM Trans. Graph..

[25]  Henry Fuchs,et al.  An Extended Depth-at-Field Volumetric Near-Eye Augmented Reality Display , 2018, IEEE Transactions on Visualization and Computer Graphics.

[26]  Gordon Wetzstein,et al.  Eyeglasses-free display , 2014, SIGGRAPH 2014.

[27]  Kevin J. MacKenzie,et al.  Real-world stereoscopic performance in multiple-focal-plane displays: How far apart should the image planes be? , 2012, Electronic Imaging.

[28]  Douglas Lanman,et al.  Fast gaze-contingent optimal decompositions for multifocal displays , 2017, ACM Trans. Graph..

[29]  Jurriaan D. Mulder Realistic occlusion effects in mirror-based co-located augmented reality systems , 2005, IEEE Proceedings. VR 2005. Virtual Reality, 2005..

[30]  Masahiko Inami,et al.  Visuo-haptic display using head-mounted projector , 2000, Proceedings IEEE Virtual Reality 2000 (Cat. No.00CB37048).

[31]  Jason Heikenfeld,et al.  Agile wide-angle beam steering with electrowetting microprisms. , 2006, Optics express.

[32]  Lei Xiao,et al.  DeepFocus: learned image synthesis for computational display , 2018, SIGGRAPH Talks.

[33]  LuebkeDavid,et al.  Near-eye light field displays , 2013 .

[34]  Martin S. Banks,et al.  A stereo display prototype with multiple focal distances , 2004, ACM Trans. Graph..

[35]  Sheng Liu,et al.  Time-multiplexed dual-focal plane head-mounted display with a liquid lens. , 2009, Optics letters.

[36]  Byoungho Lee,et al.  Tomographic near-eye displays , 2019, Nature Communications.

[37]  Douglas Lanman,et al.  Near-eye light field displays , 2013, SIGGRAPH Emerging Technologies.

[38]  Gordon Wetzstein,et al.  Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays , 2011, ACM Trans. Graph..

[39]  Hideshi Yamada,et al.  Rendering for an Interactive 360 ◦ Light Field Display , 2007 .

[40]  James E. Cutting,et al.  Chapter 3 – Perceiving Layout and Knowing Distances: The Integration, Relative Potency, and Contextual Use of Different Information about Depth* , 1995 .

[41]  Anat Levin,et al.  Passive light and viewpoint sensitive display of 3D content , 2016, 2016 IEEE International Conference on Computational Photography (ICCP).

[42]  Myron W. Krueger,et al.  Dynamic focusing in head-mounted displays , 1999, Electronic Imaging.

[43]  Gregg E. Favalora,et al.  Occlusion-capable multiview volumetric three-dimensional display. , 2007, Applied optics.

[44]  Nikhil Balram,et al.  Design and optimization of a near-eye multifocal display system for augmented reality , 2015 .

[45]  Wolfgang Heidrich,et al.  High Brightness HDR Projection Using Dynamic Freeform Lensing , 2016, ACM Trans. Graph..