Stabilization of Parabolic Nonlinear Systems with Finite Dimensional Feedback or Dynamical Controllers: Application to the Navier-Stokes System

Let $A:\mathcal{D}(A)\to\mathcal{X}$ be the generator of an analytic semigroup and $B:\mathcal{V}\to[\mathcal{D}(A^*)]'$ a relatively bounded control operator. In this paper, we consider the stabilization of the system $y'=Ay+Bu$, where $u$ is the linear combination of a family $(v_1,\ldots,v_K)$. Our main result shows that if $(A^*,B^*)$ satisfies a unique continuation property and if $K$ is greater than or equal to the maximum of the geometric multiplicities of the unstable modes of $A$, then the system is generically stabilizable with respect to the family $(v_1,\ldots,v_K)$. With the same functional framework, we also prove the stabilizability of a class of nonlinear systems when using feedback or dynamical controllers. We apply these results to stabilize the Navier-Stokes equations in two and three dimensions by using boundary controls.

[1]  Irena Lasiecka,et al.  Tangential boundary stabilization of Navier-Stokes equations , 2006 .

[2]  Jean-Pierre Raymond,et al.  A Linearized Model for Boundary Layer Equations , 2001 .

[3]  Jean-Pierre Raymond,et al.  Stokes and Navier-Stokes equations with nonhomogeneous boundary conditions , 2007 .

[4]  Cătălin Lefter Feedback stabilization of 2D Navier–Stokes equations with Navier slip boundary conditions , 2009 .

[5]  Jean-Pierre Raymond,et al.  Boundary feedback stabilization of the two dimensional Navier-Stokes equations with finite dimensional controllers , 2010 .

[6]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[7]  Jean-Pierre Raymond,et al.  The Linearized Crocco Equation , 2006 .

[8]  E. Hille Functional Analysis And Semi-Groups , 1948 .

[9]  Hiroshi Fujita,et al.  On Fractional Powers of the Stokes Operator , 1970 .

[10]  Tosio Kato Perturbation theory for linear operators , 1966 .

[11]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[12]  Jean-Pierre Raymond,et al.  FEEDBACK STABILIZATION OF A BOUNDARY LAYER EQUATION PART 1: HOMOGENEOUS STATE EQUATIONS ∗ , 2011 .

[13]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[14]  E. Fernández-Caraa,et al.  Local exact controllability of the Navier – Stokes system ✩ , 2004 .

[15]  Mehdi Badra Local Stabilization of the Navier–Stokes Equations with a Feedback Controller Localized in an Open Subset of the Domain , 2007 .

[16]  R. Temam Navier-Stokes Equations , 1977 .

[17]  Mehdi Badra,et al.  Feedback stabilization of the 2-D and 3-D Navier-Stokes equations based on an extended system , 2009 .

[18]  Roberto Triggiani,et al.  Internal stabilization of Navier-Stokes equations with finite-dimensional controllers , 2004 .

[19]  Jean-Pierre Raymond,et al.  Feedback Boundary Stabilization of the Two-Dimensional Navier--Stokes Equations , 2006, SIAM J. Control. Optim..

[20]  Oleg Yu. Imanuvilov,et al.  Remarks on exact controllability for the Navier-Stokes equations , 2001 .

[21]  Sergio Guerrero,et al.  Local exact controllability of the Navier-Stokes system ✩ , 2004 .

[22]  Robert Denk,et al.  Fourier multipliers and problems of elliptic and parabolic type , 2003 .

[23]  Sergio Guerrero,et al.  Local exact controllability to the trajectories of the Boussinesq system , 2006 .

[24]  D. Russell Controllability and Stabilizability Theory for Linear Partial Differential Equations: Recent Progress and Open Questions , 1978 .

[25]  Alain Bensoussan,et al.  Representation and Control of Infinite Dimensional Systems, 2nd Edition , 2007, Systems and control.

[26]  Jean-Pierre Raymond,et al.  Feedback boundary stabilization of the three-dimensional incompressible Navier–Stokes equations , 2007 .

[27]  J. Coron Control and Nonlinearity , 2007 .

[28]  Sergio Guerrero Controllability of systems of Stokes equations with one control force: existence of insensitizing controls , 2007 .

[29]  Giovanni Paolo Galdi,et al.  Nonlinear steady problems , 1994 .

[30]  Giovanni Paolo Galdi,et al.  Linearized steady problems , 1994 .

[31]  L. E. Fraenkel,et al.  NAVIER-STOKES EQUATIONS (Chicago Lectures in Mathematics) , 1990 .

[32]  G. Weiss,et al.  Observation and Control for Operator Semigroups , 2009 .

[33]  Takéo Takahashi,et al.  Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain , 2003, Advances in Differential Equations.

[34]  Viorel Barbu,et al.  Stabilization of Navier-Stokes Flows , 2010 .

[35]  Pierre Fabrie,et al.  Eléments d'analyse pour l'étude de quelques modèles d'écoulements de fluides visqueux incompressibles , 2006 .

[36]  Irena Lasiecka,et al.  Abstract settings for tangential boundary stabilization of Navier–Stokes equations by high- and low-gain feedback controllers , 2006 .

[37]  Jean-Pierre Raymond,et al.  Feedback Stabilization of a Boundary Layer Equation. Part 2: Nonhomogeneous State Equations and Numerical Simulations , 2010 .

[38]  A. Fursikov,et al.  Stabilizability of Two-Dimensional Navier—Stokes Equations with Help of a Boundary Feedback Control , 2001 .

[39]  G. Galdi An Introduction to the Mathematical Theory of the Navier-Stokes Equations : Volume I: Linearised Steady Problems , 1994 .

[40]  Irena Lasiecka,et al.  Local Exponential Stabilization Strategies of the Navier-Stokes Equations, d = 2, 3, via Feedback Stabilization of its Linearization , 2007 .

[41]  P. Grisvard,et al.  Caractérisation de quelques espaces d'interpolation , 1967 .

[42]  Jerzy Zabczyk Mathematical Control Theory , 1992 .

[43]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[44]  Hantaek Bae Navier-Stokes equations , 1992 .

[45]  Mehdi Badra,et al.  Lyapunov Function and Local Feedback Boundary Stabilization of the Navier--Stokes Equations , 2009, SIAM J. Control. Optim..

[46]  Jean-Pierre Raymond,et al.  HINFINITY Feedback Boundary Stabilization of the Two-Dimensional Navier-Stokes Equations , 2011, SIAM J. Control. Optim..