Direct evaluation of stress intensity factors for curved cracks using Irwin's integral and XFEM with high‐order enrichment functions

[1]  D. M. Parks A stiffness derivative finite element technique for determination of crack tip stress intensity factors , 1974 .

[2]  Y. Chen Singular integral equation method for the solution of multiple curved crack problems , 2004 .

[3]  Glaucio H. Paulino,et al.  Integration of singular enrichment functions in the generalized/extended finite element method for three‐dimensional problems , 2009 .

[4]  M. Eslami,et al.  Higher order tip enrichment of eXtended Finite Element Method in thermoelasticity , 2010 .

[5]  J. Rice,et al.  Slightly curved or kinked cracks , 1980 .

[6]  V. F. González-Albuixech,et al.  Convergence of domain integrals for stress intensity factor extraction in 2‐D curved cracks problems with the extended finite element method , 2013 .

[7]  A. Needleman,et al.  A COMPARISON OF METHODS FOR CALCULATING ENERGY RELEASE RATES , 1985 .

[8]  T. Belytschko,et al.  New crack‐tip elements for XFEM and applications to cohesive cracks , 2003 .

[9]  N. Chevaugeon,et al.  Improved crack tip enrichment functions and integration for crack modeling using the extended finite element method , 2013 .

[10]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[11]  Brian Moran,et al.  Crack tip and associated domain integrals from momentum and energy balance , 1987 .

[12]  T. Fries A corrected XFEM approximation without problems in blending elements , 2008 .

[13]  R. Sevilla,et al.  NURBS distance fields for extremely curved cracks , 2014 .

[14]  Stéphane Bordas,et al.  Stable 3D extended finite elements with higher order enrichment for accurate non planar fracture , 2016 .

[15]  T. Belytschko,et al.  The extended/generalized finite element method: An overview of the method and its applications , 2010 .

[16]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[17]  Ivo Babuška,et al.  The post‐processing approach in the finite element method—Part 2: The calculation of stress intensity factors , 1984 .

[18]  M. G. Duffy,et al.  Quadrature Over a Pyramid or Cube of Integrands with a Singularity at a Vertex , 1982 .

[19]  Michael P. Cleary,et al.  Elastostatic interaction of multiple arbitrarily shaped cracks in plane inhomogeneous regions , 1984 .

[20]  Bhushan Lal Karihaloo,et al.  XFEM for direct evaluation of mixed mode SIFs in homogeneous and bi‐materials , 2004 .

[21]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[22]  Bhushan Lal Karihaloo,et al.  Direct evaluation of accurate coefficients of the linear elastic crack tip asymptotic field , 2003 .

[23]  Ted Belytschko,et al.  Modelling crack growth by level sets in the extended finite element method , 2001 .

[24]  Subrata Mukherjee,et al.  A mapping method for numerical evaluation of two-dimensional integrals with 1/r singularity , 1993 .

[25]  R. Gracie,et al.  Cohesive and non‐cohesive fracture by higher‐order enrichment of XFEM , 2012 .

[26]  Haim Waisman,et al.  A High‐order extended finite element method for extraction of mixed‐mode strain energy release rates in arbitrary crack settings based on Irwin's integral , 2013 .

[27]  R. D. Henshell,et al.  CRACK TIP FINITE ELEMENTS ARE UNNECESSARY , 1975 .

[28]  Ivo Babuška,et al.  Generalized finite element methods for three-dimensional structural mechanics problems , 2000 .

[29]  Ted Belytschko,et al.  Fast integration and weight function blending in the extended finite element method , 2009 .

[30]  Carlos Armando Duarte,et al.  Improvements of explicit crack surface representation and update within the generalized finite element method with application to three‐dimensional crack coalescence , 2014 .

[31]  Satya N. Atluri,et al.  An assumed displacement hybrid finite element model for linear fracture mechanics , 1975 .

[32]  M. Kanninen,et al.  A finite element calculation of stress intensity factors by a modified crack closure integral , 1977 .

[33]  Haim Waisman,et al.  Progressive delamination analysis of composite materials using XFEM and a discrete damage zone model , 2015 .

[34]  Ronald Krueger,et al.  The Virtual Crack Closure Technique : History , Approach and Applications , 2002 .

[35]  Nicolas Moës,et al.  Extended finite element method in computational fracture mechanics: a retrospective examination , 2015, International Journal of Fracture.

[36]  F. Erdogan,et al.  On the Crack Extension in Plates Under Plane Loading and Transverse Shear , 1963 .

[37]  Carlos Armando Duarte,et al.  Extraction of stress intensity factors from generalized finite element solutions , 2005 .

[38]  Adrian J. Lew,et al.  Stability and convergence proofs for a discontinuous-Galerkin-based extended finite element method for fracture mechanics , 2010 .

[39]  T. Belytschko,et al.  Extended finite element method for three-dimensional crack modelling , 2000 .

[40]  Haim Waisman,et al.  A spline‐based enrichment function for arbitrary inclusions in extended finite element method with applications to finite deformations , 2013 .

[41]  Haim Waisman,et al.  From diffuse damage to sharp cohesive cracks: A coupled XFEM framework for failure analysis of quasi-brittle materials , 2016 .

[42]  I. Harari,et al.  A direct analytical method to extract mixed‐mode components of strain energy release rates from Irwin's integral using extended finite element method , 2013 .

[43]  R. Barsoum On the use of isoparametric finite elements in linear fracture mechanics , 1976 .

[44]  Haim Waisman,et al.  Extraction of stress intensity factors from Irwin's integral using high‐order XFEM on triangular meshes , 2015 .

[45]  B. Moran,et al.  An interaction energy integral method for computation of mixed-mode stress intensity factors along non-planar crack fronts in three dimensions , 2002 .

[46]  T. Belytschko,et al.  Extended finite element method for cohesive crack growth , 2002 .

[47]  S. Chan,et al.  On the Finite Element Method in Linear Fracture Mechanics , 1970 .

[48]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[49]  Paul A. Wawrzynek,et al.  Universal crack closure integral for SIF estimation , 1998 .

[50]  N. Moës,et al.  Improved implementation and robustness study of the X‐FEM for stress analysis around cracks , 2005 .

[51]  W. S. Hall,et al.  Analytical removal of singularities and one-dimensional integration of three-dimensional boundary element method kernels , 1987 .

[52]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[53]  Haim Waisman,et al.  An analytical stiffness derivative extended finite element technique for extraction of crack tip Strain Energy Release Rates , 2010 .

[54]  Adrian J. Lew,et al.  Computing stress intensity factors for curvilinear cracks , 2015, 1501.03710.

[55]  Shuodao Wang,et al.  A Mixed-Mode Crack Analysis of Isotropic Solids Using Conservation Laws of Elasticity , 1980 .

[56]  T. K. Hellen On the method of virtual crack extensions , 1975 .

[57]  T. Strouboulis,et al.  The generalized finite element method: an example of its implementation and illustration of its performance , 2000 .

[58]  Thomas-Peter Fries,et al.  Higher‐order XFEM for curved strong and weak discontinuities , 2009 .

[59]  I. Raju Calculation of strain-energy release rates with higher order and singular finite elements , 1987 .

[60]  T. Belytschko,et al.  Strong and weak arbitrary discontinuities in spectral finite elements , 2005 .

[61]  Ted Belytschko,et al.  An extended finite element method with higher-order elements for curved cracks , 2003 .

[62]  Ted Belytschko,et al.  An extended finite element method for modeling crack growth with frictional contact , 2001 .

[63]  Hong Zheng,et al.  New strategies for some issues of numerical manifold method in simulation of crack propagation , 2014 .

[64]  B. Moran,et al.  A general treatment of crack tip contour integrals , 1987 .

[65]  Michel Salaün,et al.  High‐order extended finite element method for cracked domains , 2005 .

[66]  D. A. Dunavant High degree efficient symmetrical Gaussian quadrature rules for the triangle , 1985 .

[67]  Dan Givoli,et al.  An adaptive finite element framework for fatigue crack propagation , 2002 .

[68]  Eugenio Giner,et al.  Domain integral formulation for 3-D curved and non-planar cracks with the extended finite element method , 2013 .

[69]  Adrian J. Lew,et al.  An optimally convergent discontinuous Galerkin‐based extended finite element method for fracture mechanics , 2010 .

[70]  N. Sukumar,et al.  Generalized Gaussian Quadrature Rules for Discontinuities and Crack Singularities in the Extended Finite Element Method , 2010 .