Basic studies in biaxial tensile tests
暂无分享,去创建一个
[1] Stéphane Avril,et al. The Virtual Fields Method for Extracting Constitutive Parameters From Full‐Field Measurements: a Review , 2006 .
[2] R. Kreißig. Auswertung inhomogener Verschiebungsfelder zur Identifikation der Parameter elastisch-plastischer Deformationsgesetze , 1998 .
[3] Rolf Mahnken,et al. Parameter identification for finite deformation elasto-plasticity in principal directions , 1997 .
[4] S. Hartmann,et al. Displacement control in time‐adaptive non‐linear finite‐element analysis , 2008 .
[5] Wim Van Paepegem,et al. Strain distribution in cruciform specimens subjected to biaxial loading conditions. Part 2: Influence of geometrical discontinuities , 2010 .
[6] Stefan Diebels,et al. Characterisation of a polymer using biaxial tension tests. Part I: Hyperelasticity , 2011 .
[7] Ch. Tsakmakis,et al. Determination of constitutive properties fromspherical indentation data using neural networks. Part ii:plasticity with nonlinear isotropic and kinematichardening , 1999 .
[8] D. Van Hemelrijck,et al. Design of a cruciform specimen for biaxial testing of fibre reinforced composite laminates , 2006 .
[9] Wim Van Paepegem,et al. Strain distribution in cruciform specimens subjected to biaxial loading conditions. Part 1: Two-dimensional versus three-dimensional finite element model , 2010 .
[10] A. Ranta-Eskola. Use of the hydraulic bulge test in biaxial tensile testing , 1979 .
[11] Stéphane Avril,et al. Comparison of two approaches for differentiating full-field data in solid mechanics , 2009 .
[12] S. Diebels,et al. Macroindentation of a soft polymer: Identification of hyperelasticity and validation by uni/biaxial tensile tests , 2013 .
[13] A. Elías-Zúñiga,et al. An Optimum Specimen Geometry for Equibiaxial Experimental Tests of Reinforced Magnetorheological Elastomers with Iron Micro- and Nanoparticles , 2017, Nanomaterials.
[14] L. Thibodeau,et al. A high-strain biaxial-testing rig for thin-walled tubes under axial load and pressure , 1983 .
[15] O. Hopperstad,et al. Experimental and numerical study on the behaviour of PVC and HDPE in biaxial tension , 2012 .
[16] S. Hartmann,et al. Finite deformations of a carbon black-filled rubber. Experiment, optical measurement and material parameter identification using finite elements , 2003 .
[17] L. Chevalier,et al. Identification of a strain induced crystallisation model for PET under uni- and bi-axial loading: Influence of temperature dispersion , 2007 .
[18] Pierre Feissel,et al. Modified constitutive relation error identification strategy for transient dynamics with corrupted data : the elastic case , 2007 .
[19] W. Van Paepegem,et al. Shape optimisation of a biaxially loaded cruciform specimen , 2010 .
[20] H. Kawai,et al. Experimental survey of the strain energy density function of isoprene rubber vulcanizate , 1981 .
[21] Mathias Brieu,et al. Development of a biaxial tensile test fixture for reinforced thermoplastic composites , 2007 .
[22] M. Bonnet,et al. Overview of Identification Methods of Mechanical Parameters Based on Full-field Measurements , 2008 .
[23] Kenneth W. Neale,et al. Development of an apparatus for biaxial testing using cruciform specimens , 1992 .
[24] Pablo Juan Garcia,et al. Measurement of mortar permittivity during setting using a coplanar waveguide , 2010 .
[25] Z. Marciniak,et al. Limit strains in the processes of stretch-forming sheet metal , 1967 .
[26] Peter Tiernan,et al. A review of planar biaxial tensile test systems for sheet metal , 2008 .
[27] J. P. Boehler,et al. A new direct biaxial testing machine for anisotropic materials , 1994 .
[28] H. G. Natke,et al. On the parameter identification of elastomechanical systems using input and output residuals , 1984 .
[29] Joost J. Vlassak,et al. A new bulge test technique for the determination of Young’s modulus and Poisson’s ratio of thin films , 1992 .
[30] F. Hemez,et al. Updating finite element dynamic models using an element-by-element sensitivity methodology , 1993 .
[31] Hugo Sol,et al. Mixed numerical–experimental technique for orthotropic parameter identification using biaxial tensile tests on cruciform specimens , 2007 .
[32] Wim Van Paepegem,et al. Shape optimization of a cruciform geometry for biaxial testing of polymers , 2015 .
[33] L. Chevalier,et al. Tools for multiaxial validation of behavior laws chosen for modeling hyper-elasticity of rubber-like materials , 2002, 1011.5031.
[34] Donald F. Adams,et al. An experimental investigation of the biaxial strength of IM6/3501-6 carbon/epoxy cross-ply laminates using cruciform specimens , 2002 .
[35] Jonathan Richard Shewchuk,et al. Delaunay refinement algorithms for triangular mesh generation , 2002, Comput. Geom..
[36] S. Tajima,et al. Improving Powder Magnetic Core Properties via Application of Thin, Insulating Silica-Nanosheet Layers on Iron Powder Particles , 2016, Nanomaterials.
[37] D. Van Hemelrijck,et al. Failure prediction for a glass/epoxy cruciform specimen under static biaxial loading , 2010 .
[38] Kai Willner,et al. Comparison of Different Biaxial Tests for the Inverse Identification of Sheet Steel Material Parameters , 2014 .
[39] Rolf Mahnken,et al. A unified approach for parameter identification of inelastic material models in the frame of the finite element method , 1996 .
[40] S. Kawabata,et al. 3—THE FINITE-DEFORMATION THEORY OF PLAIN-WEAVE FABRICS PART I: THE BIAXIAL-DEFORMATION THEORY , 1973 .
[41] D. W. Saunders,et al. Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[42] J. Boehler,et al. Optimal design of biaxial tensile cruciform specimens , 1993 .
[43] Stefan Hartmann,et al. Homogeneous stress–strain states computed by 3D-stress algorithms of FE-codes: application to material parameter identification , 2013, Engineering with Computers.
[44] Frédéric Barlat,et al. Advances in anisotropy and formability , 2010 .
[45] Jonathan Richard Shewchuk,et al. Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.
[46] Stéphane Avril,et al. The Virtual Fields Method , 2012 .