Guided analysis of hurricane trends using statistical processes integrated with interactive parallel coordinates

This paper demonstrates the promise of augmenting interactive multivariate representations with information from statistical processes in the domain of weather data analysis. Statistical regression, correlation analysis, and descriptive statistical calculations are integrated via graphical indicators into an enhanced parallel coordinates system, called the Multidimensional Data eXplorer (MDX). These statistical indicators, which highlight significant associations in the data, are complemented with interactive visual analysis capabilities. The resulting system allows a smooth, interactive, and highly visual workflow. The system's utility is demonstrated with an extensive hurricane climate study that was conducted by a hurricane expert. In the study, the expert used a new data set of environmental weather data, composed of 28 independent variables, to predict annual hurricane activity. MDX shows the Atlantic Meridional Mode increases the explained variance of hurricane seasonal activity by 7–15% and removes less significant variables used in earlier studies. The findings and feedback from the expert (1) validate the utility of the data set for hurricane prediction, and (2) indicate that the integration of statistical processes with interactive parallel coordinates, as implemented in MDX, addresses both deficiencies in traditional weather data analysis and exhibits some of the expected benefits of visual data analysis.

[1]  I. Ntzoufras Gibbs Variable Selection using BUGS , 2002 .

[2]  Pak Chung Wong,et al.  30 Years of Multidimensional Multivariate Visualization , 1994, Scientific Visualization.

[3]  James T. Enns,et al.  Perceptually based brush strokes for nonphotorealistic visualization , 2004, TOGS.

[4]  D. Alexander Natural Disasters , 1993 .

[5]  Alfred Inselberg,et al.  The plane with parallel coordinates , 1985, The Visual Computer.

[6]  Roberto Therón Visual Analytics of Paleoceanographic Conditions , 2006, 2006 IEEE Symposium On Visual Analytics Science And Technology.

[7]  Patrick J. Fitzpatrick,et al.  Understanding and Forecasting Tropical Cyclone Intensity Change with the Typhoon Intensity Prediction Scheme (TIPS) , 1997 .

[8]  D. C. Howell Statistical Methods for Psychology , 1987 .

[9]  Matthew O. Ward,et al.  High Dimensional Brushing for Interactive Exploration of Multivariate Data , 1995, Proceedings Visualization '95.

[10]  Daniel J. Vimont,et al.  A More General Framework for Understanding Atlantic Hurricane Variability and Trends , 2007 .

[11]  E. Wegman Hyperdimensional Data Analysis Using Parallel Coordinates , 1990 .

[12]  Harri Siirtola Direct manipulation of parallel coordinates , 2000, CHI Extended Abstracts.

[13]  Alan M. MacEachren,et al.  CONSTRUCTING KNOWLEDGE FROM MULTIVARIATE SPATIOTEMPORAL DATA : Integrating Geographic Visualization ( GVis ) with Knowledge Discovery in Database ( KDD ) Methods , 1998 .

[14]  Raymond H. Myers,et al.  Probability and Statistics for Engineers and Scientists. , 1973 .

[15]  Helwig Hauser,et al.  Angular brushing of extended parallel coordinates , 2002, IEEE Symposium on Information Visualization, 2002. INFOVIS 2002..

[16]  Martin Theus,et al.  Interactive Data Visualization using Mondrian , 2002 .

[17]  Ping Guo,et al.  Visual Analysis of the Air Pollution Problem in Hong Kong , 2007, IEEE Transactions on Visualization and Computer Graphics.

[18]  Jason Dykes,et al.  Seeking structure in records of spatio-temporal behaviour: visualization issues, efforts and applications , 2003, Comput. Stat. Data Anal..

[19]  Matthew O. Ward,et al.  Hierarchical parallel coordinates for exploration of large datasets , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[20]  Alan M. MacEachren,et al.  Constructing knowledge from multivariate spatiotemporal data: integrating geographical visualization with knowledge discovery in database methods , 1999, Int. J. Geogr. Inf. Sci..

[21]  Philip J. Klotzbach,et al.  EXTENDED RANGE FORECAST OF ATLANTIC SEASONAL HURRICANE ACTIVITY AND LANDFALL STRIKE PROBABILITY FOR 2010 , 2008 .

[22]  Helwig Hauser,et al.  Outlier-Preserving Focus+Context Visualization in Parallel Coordinates , 2006, IEEE Transactions on Visualization and Computer Graphics.

[23]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[24]  Daniel J. Vimont,et al.  The Atlantic Meridional Mode and hurricane activity , 2007 .

[25]  Robert L. Grossman,et al.  High-Dimensional Visual Analytics: Interactive Exploration Guided by Pairwise Views of Point Distributions , 2006, IEEE Transactions on Visualization and Computer Graphics.

[26]  M. Cooper,et al.  Revealing structure within clustered parallel coordinates displays , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[27]  T. J. Jankun-Kelly,et al.  An interactive parallel coordinates technique applied to a tropical cyclone climate analysis , 2009, Comput. Geosci..

[28]  M. Braga,et al.  Exploratory Data Analysis , 2018, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[29]  Almir Olivette Artero,et al.  Uncovering Clusters in Crowded Parallel Coordinates Visualizations , 2004 .