The fragment molecular orbital and systematic molecular fragmentation methods applied to water clusters.

Two electronic structure methods, the fragment molecular orbital (FMO) and systematic molecular fragmentation (SMF) methods, that are based on fragmenting a large molecular system into smaller, more computationally tractable components (fragments), are presented and compared with fully ab initio results for the predicted binding energies of water clusters. It is demonstrated that, even when explicit three-body effects are included (especially necessary for water clusters due to their complex hydrogen-bonded networks) both methods present viable, computationally efficient alternatives to fully ab initio quantum chemistry.

[1]  Ryan P A Bettens,et al.  A new algorithm for molecular fragmentation in quantum chemical calculations. , 2006, The journal of physical chemistry. A.

[2]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[3]  Mark S. Gordon,et al.  The Effective Fragment Potential Method: A QM-Based MM Approach to Modeling Environmental Effects in Chemistry , 2001 .

[4]  K. Morokuma,et al.  ONIOM: A Multilayered Integrated MO + MM Method for Geometry Optimizations and Single Point Energy Predictions. A Test for Diels−Alder Reactions and Pt(P(t-Bu)3)2 + H2 Oxidative Addition , 1996 .

[5]  Yuji Mochizuki,et al.  Configuration interaction singles method with multilayer fragment molecular orbital scheme , 2005 .

[6]  Kazuo Kitaura,et al.  Extending the power of quantum chemistry to large systems with the fragment molecular orbital method. , 2007, The journal of physical chemistry. A.

[7]  Donald G Truhlar,et al.  Electrostatically Embedded Many-Body Expansion for Large Systems, with Applications to Water Clusters. , 2007, Journal of chemical theory and computation.

[8]  Kazuo Kitaura,et al.  Polarizable continuum model with the fragment molecular orbital‐based time‐dependent density functional theory , 2008, J. Comput. Chem..

[9]  Mark S. Gordon,et al.  An effective fragment method for modeling solvent effects in quantum mechanical calculations , 1996 .

[10]  Spencer R Pruitt,et al.  Open-Shell Formulation of the Fragment Molecular Orbital Method. , 2010, Journal of chemical theory and computation.

[11]  Michael A Collins,et al.  Accuracy and efficiency of electronic energies from systematic molecular fragmentation. , 2006, The Journal of chemical physics.

[12]  Ye Mei,et al.  A new quantum method for electrostatic solvation energy of protein. , 2006, The Journal of chemical physics.

[13]  Kazuo Kitaura,et al.  Multiconfiguration self-consistent-field theory based upon the fragment molecular orbital method. , 2005, The Journal of chemical physics.

[14]  Michael A. Collins,et al.  Accurate treatment of nonbonded interactions within systematic molecular fragmentation , 2009 .

[15]  Gregory S. Tschumper,et al.  CCSD(T) complete basis set limit relative energies for low-lying water hexamer structures. , 2009, The journal of physical chemistry. A.

[16]  Mark S. Gordon,et al.  Accurate methods for large molecular systems. , 2009, The journal of physical chemistry. B.

[17]  M. Gordon,et al.  AB INITIO LOCALIZED CHARGE DISTRIBUTIONS : THEORY AND A DETAILED ANALYSIS OF THE WATER DIMER-HYDROGEN BOND , 1995 .

[18]  Mark S. Gordon,et al.  Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements , 1982 .

[19]  Wei Li,et al.  Generalized energy-based fragmentation approach for computing the ground-state energies and properties of large molecules. , 2007, The journal of physical chemistry. A.

[20]  Kazuo Kitaura,et al.  Second order Møller-Plesset perturbation theory based upon the fragment molecular orbital method. , 2004, The Journal of chemical physics.

[21]  Thom Vreven,et al.  Geometry optimization with QM/MM, ONIOM, and other combined methods. I. Microiterations and constraints , 2003, J. Comput. Chem..

[22]  Anthony J Stone,et al.  Distributed Multipole Analysis:  Stability for Large Basis Sets. , 2005, Journal of chemical theory and computation.

[23]  K. Kitaura,et al.  Fragment molecular orbital method: an approximate computational method for large molecules , 1999 .

[24]  Kazuo Kitaura,et al.  The importance of three-body terms in the fragment molecular orbital method. , 2004, The Journal of chemical physics.

[25]  Kazuo Kitaura,et al.  Pair interaction energy decomposition analysis , 2007, J. Comput. Chem..

[26]  Mark S. Gordon,et al.  A new hierarchical parallelization scheme: Generalized distributed data interface (GDDI), and an application to the fragment molecular orbital method (FMO) , 2004, J. Comput. Chem..

[27]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[28]  John Z H Zhang,et al.  Theoretical method for full ab initio calculation of DNA/RNA-ligand interaction energy. , 2004, The Journal of chemical physics.

[29]  K. Kitaura,et al.  Multilayer formulation of the fragment molecular orbital method (FMO). , 2005, The journal of physical chemistry. A.

[30]  X. Chen,et al.  Fractionation of peptide with disulfide bond for quantum mechanical calculation of interaction energy with molecules. , 2004, The Journal of chemical physics.

[31]  Michael A Collins,et al.  Approximate ab initio energies by systematic molecular fragmentation. , 2005, The Journal of chemical physics.

[32]  A. Wallqvist,et al.  Molecular Models of Water: Derivation and Description , 2007 .

[33]  Philip Ball,et al.  Water: Water — an enduring mystery , 2008, Nature.

[34]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[35]  P. N. Day,et al.  A study of water clusters using the effective fragment potential and Monte Carlo simulated annealing , 2000 .

[36]  Hui Li,et al.  The polarizable continuum model (PCM) interfaced with the fragment molecular orbital method (FMO) , 2006, J. Comput. Chem..

[37]  Mark S Gordon,et al.  Systematic fragmentation method and the effective fragment potential: an efficient method for capturing molecular energies. , 2009, The journal of physical chemistry. A.

[38]  Wei Li,et al.  A localized molecular-orbital assembler approach for Hartree-Fock calculations of large molecules. , 2005, The Journal of chemical physics.

[39]  Michael A Collins,et al.  Systematic fragmentation of large molecules by annihilation. , 2012, Physical chemistry chemical physics : PCCP.

[40]  J. H. Zhang,et al.  MFCC-DOWNHILL SIMPLEX METHOD FOR MOLECULAR STRUCTURE OPTIMIZATION , 2004 .

[41]  K. Kitaura,et al.  Time-dependent density functional theory with the multilayer fragment molecular orbital method , 2007 .

[42]  N. Hush,et al.  Density-functional geometry optimization of the 150,000-atom photosystem-I trimer. , 2006, The Journal of chemical physics.

[43]  Weitao Yang,et al.  A density‐matrix divide‐and‐conquer approach for electronic structure calculations of large molecules , 1995 .

[44]  Kaori Fukuzawa,et al.  Fragment molecular orbital method: use of approximate electrostatic potential , 2002 .

[45]  Edoardo Aprà,et al.  High-Level Ab Initio Electronic Structure Calculations of Water Clusters (H2O)16 and (H2O)17: A New Global Minimum for (H2O)16 , 2010 .

[46]  M. Gordon,et al.  Localized Charge Distributions. I. General Theory, Energy Partitioning, and the Internal Rotation Barrier in Ethane , 1971 .

[47]  Kazuo Kitaura,et al.  On the accuracy of the 3-body fragment molecular orbital method (FMO) applied to density functional theory , 2004 .

[48]  Fernando Cortés-Guzmán,et al.  Transferability of group energies and satisfaction of the virial theorem , 2003 .

[49]  Kazuo Kitaura,et al.  The three-body fragment molecular orbital method for accurate calculations of large systems , 2006 .

[50]  Jan H. Jensen,et al.  Chapter 10 The Effective Fragment Potential: A General Method for Predicting Intermolecular Interactions , 2007 .

[51]  John Z. H. Zhang,et al.  Molecular fractionation with conjugate caps for full quantum mechanical calculation of protein-molecule interaction energy , 2003 .

[52]  Jan H. Jensen,et al.  Effective fragment molecular orbital method: a merger of the effective fragment potential and fragment molecular orbital methods. , 2010, The journal of physical chemistry. A.

[53]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[54]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[55]  Kaori Fukuzawa,et al.  Development of the four-body corrected fragment molecular orbital (FMO4) method , 2012 .

[56]  Shridhar R. Gadre,et al.  Ab initio quality one‐electron properties of large molecules: Development and testing of molecular tailoring approach , 2003, J. Comput. Chem..

[57]  Klaus Rüdenberg,et al.  On the Three‐ and Four‐Center Integrals in Molecular Quantum Mechanics , 1951 .

[58]  M. Gordon,et al.  A combined effective fragment potential-fragment molecular orbital method. I. The energy expression and initial applications. , 2009, The Journal of chemical physics.

[59]  Julian Tirado-Rives,et al.  Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Kazuo Kitaura,et al.  The Fragment Molecular Orbital Method: Practical Applications to Large Molecular Systems , 2009 .

[61]  R. Parr,et al.  Remark on the Mulliken Approximation for Two‐Center Electron Distributions , 1961 .