Tangent Lévy market models

In this paper, we introduce a new class of models for the time evolution of the prices of call options of all strikes and maturities. We capture the information contained in the option prices in the density of some time-inhomogeneous Lévy measure (an alternative to the implied volatility surface), and we set this static code-book in motion by means of stochastic dynamics of Itô’s type in a function space, creating what we call a tangent Lévy model. We then provide the consistency conditions, namely, we show that the call prices produced by a given dynamic code-book (dynamic Lévy density) coincide with the conditional expectations of the respective payoffs if and only if certain restrictions on the dynamics of the code-book are satisfied (including a drift condition à la HJM). We then provide an existence result, which allows us to construct a large class of tangent Lévy models, and describe a specific example for the sake of illustration.

[1]  J. Zabczyk,et al.  Stochastic Equations in Infinite Dimensions , 2008 .

[2]  J. Diestel,et al.  On vector measures , 1974 .

[3]  M. Schweizer,et al.  TERM STRUCTURES OF IMPLIED VOLATILITIES: ABSENCE OF ARBITRAGE AND EXISTENCE RESULTS , 2007 .

[4]  Laurent Cousot,et al.  Necessary and Sufficient Conditions for No Static Arbitrage among European Calls , 2004 .

[5]  I. Gyöngy Mimicking the one-dimensional marginal distributions of processes having an ito differential , 1986 .

[6]  J. Retherford Review: J. Diestel and J. J. Uhl, Jr., Vector measures , 1978 .

[7]  J. Jacod Une generalisation des semimaritingales : Les processus admettant un processus a accroissements independants tangent , 1984 .

[8]  D. Lépingle,et al.  Sur l'intégrabilité uniforme des martingales exponentielles , 1978 .

[9]  Jean Jacod,et al.  Risk-neutral compatibility with option prices , 2010, Finance Stochastics.

[10]  Rama Cont,et al.  Integro-differential equations for option prices in exponential Lévy models , 2005, Finance Stochastics.

[11]  Jean-Paul Laurent,et al.  Building a Consistent Pricing Model from Observed Option Prices , 1998 .

[12]  René Carmona,et al.  Local volatility dynamic models , 2009, Finance Stochastics.

[13]  Laurent Cousot,et al.  Conditions on Option Prices for Absence of Arbitrage and Exact Calibration , 2006 .

[14]  Rama Cont,et al.  Mimicking the marginal distributions of a semimartingale , 2009, 0910.3992.

[15]  佐藤 健一 Lévy processes and infinitely divisible distributions , 2013 .

[16]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[17]  Josef Teichmann,et al.  Term Structure Models Driven by Wiener Processes and Poisson Measures: Existence and Positivity , 2010, SIAM J. Financial Math..

[18]  Emanuel Derman,et al.  STOCHASTIC IMPLIED TREES: ARBITRAGE PRICING WITH STOCHASTIC TERM AND STRIKE STRUCTURE OF VOLATILITY , 1998 .

[19]  Mark H. A. Davis,et al.  THE RANGE OF TRADED OPTION PRICES , 2007 .

[20]  Johannes Wissel,et al.  Arbitrage-free market models for option prices: the multi-strike case , 2008, Finance Stochastics.

[21]  W. Marsden I and J , 2012 .

[22]  Steven Kou,et al.  A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..

[23]  R. Cont,et al.  Financial Modelling with Jump Processes , 2003 .

[24]  H. Kuo Gaussian Measures in Banach Spaces , 1975 .

[25]  Rama Cont,et al.  Dynamics of implied volatility surfaces , 2002 .

[26]  P. J. Schonbucher A market model for stochastic implied volatility , 1999 .

[27]  R. Carmona,et al.  AN INFINITE DIMENSIONAL STOCHASTIC ANALYSIS APPROACH TO LOCAL VOLATILITY DYNAMIC MODELS , 2008 .

[28]  René Carmona,et al.  Interest rate models : an infinite dimensional stochastic analysis perspective , 2006 .

[29]  M. Yor,et al.  The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .

[30]  Rama Cont,et al.  Stochastic Models of Implied Volatility Surfaces , 2002 .

[31]  P. Protter Stochastic integration and differential equations , 1990 .

[32]  Marc Yor,et al.  From local volatility to local Lévy models , 2004 .

[33]  Expensive martingales , 2006 .

[34]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[35]  Bruno Dupire Pricing with a Smile , 1994 .

[36]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[37]  Alex W. H. Chan Merton, Robert C. , 2010 .

[38]  J. Jacod,et al.  Processus admettant un processus à accroissements indépendants tangent : cas général , 1987 .

[39]  P. Carr,et al.  Option valuation using the fast Fourier transform , 1999 .

[40]  E. Seneta,et al.  The Variance Gamma (V.G.) Model for Share Market Returns , 1990 .

[41]  Séminaire de Probabilités XXI , 1977 .