Tangent Lévy market models
暂无分享,去创建一个
[1] J. Zabczyk,et al. Stochastic Equations in Infinite Dimensions , 2008 .
[2] J. Diestel,et al. On vector measures , 1974 .
[3] M. Schweizer,et al. TERM STRUCTURES OF IMPLIED VOLATILITIES: ABSENCE OF ARBITRAGE AND EXISTENCE RESULTS , 2007 .
[4] Laurent Cousot,et al. Necessary and Sufficient Conditions for No Static Arbitrage among European Calls , 2004 .
[5] I. Gyöngy. Mimicking the one-dimensional marginal distributions of processes having an ito differential , 1986 .
[6] J. Retherford. Review: J. Diestel and J. J. Uhl, Jr., Vector measures , 1978 .
[7] J. Jacod. Une generalisation des semimaritingales : Les processus admettant un processus a accroissements independants tangent , 1984 .
[8] D. Lépingle,et al. Sur l'intégrabilité uniforme des martingales exponentielles , 1978 .
[9] Jean Jacod,et al. Risk-neutral compatibility with option prices , 2010, Finance Stochastics.
[10] Rama Cont,et al. Integro-differential equations for option prices in exponential Lévy models , 2005, Finance Stochastics.
[11] Jean-Paul Laurent,et al. Building a Consistent Pricing Model from Observed Option Prices , 1998 .
[12] René Carmona,et al. Local volatility dynamic models , 2009, Finance Stochastics.
[13] Laurent Cousot,et al. Conditions on Option Prices for Absence of Arbitrage and Exact Calibration , 2006 .
[14] Rama Cont,et al. Mimicking the marginal distributions of a semimartingale , 2009, 0910.3992.
[15] 佐藤 健一. Lévy processes and infinitely divisible distributions , 2013 .
[16] A. Shiryaev,et al. Limit Theorems for Stochastic Processes , 1987 .
[17] Josef Teichmann,et al. Term Structure Models Driven by Wiener Processes and Poisson Measures: Existence and Positivity , 2010, SIAM J. Financial Math..
[18] Emanuel Derman,et al. STOCHASTIC IMPLIED TREES: ARBITRAGE PRICING WITH STOCHASTIC TERM AND STRIKE STRUCTURE OF VOLATILITY , 1998 .
[19] Mark H. A. Davis,et al. THE RANGE OF TRADED OPTION PRICES , 2007 .
[20] Johannes Wissel,et al. Arbitrage-free market models for option prices: the multi-strike case , 2008, Finance Stochastics.
[21] W. Marsden. I and J , 2012 .
[22] Steven Kou,et al. A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..
[23] R. Cont,et al. Financial Modelling with Jump Processes , 2003 .
[24] H. Kuo. Gaussian Measures in Banach Spaces , 1975 .
[25] Rama Cont,et al. Dynamics of implied volatility surfaces , 2002 .
[26] P. J. Schonbucher. A market model for stochastic implied volatility , 1999 .
[27] R. Carmona,et al. AN INFINITE DIMENSIONAL STOCHASTIC ANALYSIS APPROACH TO LOCAL VOLATILITY DYNAMIC MODELS , 2008 .
[28] René Carmona,et al. Interest rate models : an infinite dimensional stochastic analysis perspective , 2006 .
[29] M. Yor,et al. The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .
[30] Rama Cont,et al. Stochastic Models of Implied Volatility Surfaces , 2002 .
[31] P. Protter. Stochastic integration and differential equations , 1990 .
[32] Marc Yor,et al. From local volatility to local Lévy models , 2004 .
[33] Expensive martingales , 2006 .
[34] R. C. Merton,et al. Option pricing when underlying stock returns are discontinuous , 1976 .
[35] Bruno Dupire. Pricing with a Smile , 1994 .
[36] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[37] Alex W. H. Chan. Merton, Robert C. , 2010 .
[38] J. Jacod,et al. Processus admettant un processus à accroissements indépendants tangent : cas général , 1987 .
[39] P. Carr,et al. Option valuation using the fast Fourier transform , 1999 .
[40] E. Seneta,et al. The Variance Gamma (V.G.) Model for Share Market Returns , 1990 .
[41] Séminaire de Probabilités XXI , 1977 .