A Theoretical Framework for Convex Regularizers in PDE-Based Computation of Image Motion

Many differential methods for the recovery of the optic flow field from an image sequence can be expressed in terms of a variational problem where the optic flow minimizes some energy. Typically, these energy functionals consist of two terms: a data term, which requires e.g. that a brightness constancy assumption holds, and a regularizer that encourages global or piecewise smoothness of the flow field. In this paper we present a systematic classification of rotation invariant convex regularizers by exploring their connection to diffusion filters for multichannel images. This taxonomy provides a unifying framework for data-driven and flow-driven, isotropic and anisotropic, as well as spatial and spatio-temporal regularizers. While some of these techniques are classic methods from the literature, others are derived here for the first time. We prove that all these methods are well-posed: they posses a unique solution that depends in a continuous way on the initial data. An interesting structural relation between isotropic and anisotropic flow-driven regularizers is identified, and a design criterion is proposed for constructing anisotropic flow-driven regularizers in a simple and direct way from isotropic ones. Its use is illustrated by several examples.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  S. Brendle,et al.  Calculus of Variations , 1927, Nature.

[3]  Dr. M. G. Worster Methods of Mathematical Physics , 1947, Nature.

[4]  R. Courant,et al.  Methods of Mathematical Physics, Vol. I , 1954 .

[5]  J. Staib An Introduction to Matrices and Linear Transformations , 1969 .

[6]  Andrea J. van Doorn,et al.  Invariant Properties of the Motion Parallax Field due to the Movement of Rigid Bodies Relative to an Observer , 1975 .

[7]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[8]  S. Singh Nonlinear functional analysis and its applications , 1986 .

[9]  Silvano Di Zenzo,et al.  A note on the gradient of a multi-image , 1986, Comput. Vis. Graph. Image Process..

[10]  Hans-Hellmut Nagel,et al.  An Investigation of Smoothness Constraints for the Estimation of Displacement Vector Fields from Image Sequences , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[12]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[13]  Hans-Hellmut Nagel,et al.  On the Estimation of Optical Flow: Relations between Different Approaches and Some New Results , 1987, Artif. Intell..

[14]  David W. Murray,et al.  Scene Segmentation from Visual Motion Using Global Optimization , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  M. Bertero,et al.  Ill-posed problems in early vision , 1988, Proc. IEEE.

[16]  Wilfried Enkelmann,et al.  Investigations of multigrid algorithms for the estimation of optical flow fields in image sequences , 1988, Comput. Vis. Graph. Image Process..

[17]  Hans-Hellmut Nagel,et al.  Extending the 'Oriented Smoothness Constraint' into the Temporal Domain and the Estimation of Derivatives of Optical Flow , 1990, ECCV.

[18]  M. A. Snyder On the Mathematical Foundations of Smoothness Constraints for the Determination of Optical Flow and for Surface Reconstruction , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Michael J. Black,et al.  Robust dynamic motion estimation over time , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[20]  Michel Barlaud,et al.  Motion estimation involving discontinuities in a multiresolution scheme , 1992, Other Conferences.

[21]  Guido Gerig,et al.  Nonlinear anisotropic filtering of MRI data , 1992, IEEE Trans. Medical Imaging.

[22]  Jitendra Malik,et al.  Robust computation of optical flow in a multi-scale differential framework , 1993, 1993 (4th) International Conference on Computer Vision.

[23]  Patrick Bouthemy,et al.  Multimodal Estimation of Discontinuous Optical Flow using Markov Random Fields , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Paolo Nesi,et al.  Variational approach to optical flow estimation managing discontinuities , 1993, Image Vis. Comput..

[25]  L. Blanc-Féraud,et al.  Motion estimation involving discontinuities in multiresolution scheme , 1993 .

[26]  Christoph Schnörr On Functionals with Greyvalue-Controlled Smoothness Terms for Determining Optical Flow , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Luc Van Gool,et al.  Determination of Optical Flow and its Discontinuities using Non-Linear Diffusion , 1994, ECCV.

[28]  Guido Gerig,et al.  Vector-Valued Diffusion , 1994, Geometry-Driven Diffusion in Computer Vision.

[29]  Michel Barlaud,et al.  Two deterministic half-quadratic regularization algorithms for computed imaging , 1994, Proceedings of 1st International Conference on Image Processing.

[30]  Edward J. Delp,et al.  Discontinuity preserving regularization of inverse visual problems , 1994, IEEE Trans. Syst. Man Cybern..

[31]  J. Weickert Scale-Space Properties of Nonlinear Diffusion Filtering with a Diffusion Tensor , 1994 .

[32]  Christoph Schnörr,et al.  Segmentation of visual motion by minimizing convex non-quadratic functionals , 1994, ICPR.

[33]  Bart M. ter Haar Romeny,et al.  Geometry-Driven Diffusion in Computer Vision , 1994, Computational Imaging and Vision.

[34]  Christoph Schnörr,et al.  A Variational Approach to the Design of Early Vision Algorithms , 1994, Theoretical Foundations of Computer Vision.

[35]  Rachid Deriche,et al.  Optical-Flow Estimation while Preserving Its Discontinuities: A Variational Approach , 1995, ACCV.

[36]  Hans-Hellmut Nagel,et al.  Estimation of Optical Flow Based on Higher-Order Spatiotemporal Derivatives in Interlaced and Non-Interlaced Image Sequences , 1995, Artif. Intell..

[37]  Gary J. Balas,et al.  Optical flow: a curve evolution approach , 1995, Proceedings., International Conference on Image Processing.

[38]  C. Schnörr Convex variational segmentation of multi-channel images , 1996 .

[39]  Gary J. Balas,et al.  Optical flow: a curve evolution approach , 1996, IEEE Trans. Image Process..

[40]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[41]  Michael J. Black,et al.  The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields , 1996, Comput. Vis. Image Underst..

[42]  Max A. Viergever,et al.  Scale-Space Theory in Computer Vision , 1997 .

[43]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[44]  Peter Johansen,et al.  Gaussian Scale-Space Theory , 1997, Computational Imaging and Vision.

[45]  Joachim Weickert,et al.  On Discontinuity-Preserving Optic Flow , 1998 .

[46]  Brendan McCane,et al.  Recovering Motion Fields: An Evaluation of Eight Optical Flow Algorithms , 1998, BMVC.

[47]  Patrick Pérez,et al.  Dense estimation and object-based segmentation of the optical flow with robust techniques , 1998, IEEE Trans. Image Process..

[48]  Joachim Weickert,et al.  Coherence-enhancing diffusion of colour images , 1999, Image Vis. Comput..

[49]  Joachim Weickert,et al.  Scale-Space Theories in Computer Vision , 1999, Lecture Notes in Computer Science.

[50]  Rachid Deriche,et al.  Computing Optical Flow via Variational Techniques , 1999, SIAM J. Appl. Math..

[51]  C. Stiller,et al.  Estimating motion in image sequences , 1999, IEEE Signal Process. Mag..

[52]  Joachim Weickert,et al.  Räumlich-zeitliche Berechnung des optischen Flusses mit nichtlinearen flußabhängigen Glattheitstermen , 1999, DAGM-Symposium.

[53]  Julio Esclarín Monreal,et al.  A PDE model for computing the optimal flow , 1999 .

[54]  Joachim Weickert,et al.  Variational Image Motion Computation: Theoretical Framework, Problems and Perspectives , 2000, DAGM-Symposium.

[55]  David J. Fleet,et al.  Computation of component image velocity from local phase information , 1990, International Journal of Computer Vision.

[56]  Christoph Schnörr,et al.  A nonlinear regularization approach to early vision , 1994, Biological Cybernetics.

[57]  Patrick Bouthemy,et al.  Computation and analysis of image motion: A synopsis of current problems and methods , 1996, International Journal of Computer Vision.

[58]  Joachim Weickert,et al.  Reliable Estimation of Dense Optical Flow Fields with Large Displacements , 2000, International Journal of Computer Vision.

[59]  Ron Kimmel,et al.  Images as Embedded Maps and Minimal Surfaces: Movies, Color, Texture, and Volumetric Medical Images , 2000, International Journal of Computer Vision.

[60]  Joachim Weickert,et al.  Variational Optic Flow Computation with a Spatio-Temporal Smoothness Constraint , 2001, Journal of Mathematical Imaging and Vision.

[61]  P. Anandan,et al.  A computational framework and an algorithm for the measurement of visual motion , 1987, International Journal of Computer Vision.

[62]  Christoph Schnörr,et al.  Determining optical flow for irregular domains by minimizing quadratic functionals of a certain class , 1991, International Journal of Computer Vision.

[63]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[64]  Jitendra Malik,et al.  Robust computation of optical flow in a multi-scale differential framework , 2005, International Journal of Computer Vision.

[65]  Michael E. Taylor,et al.  Differential Geometry I , 1994 .

[66]  I. Cohen Nonlinear Variational Method for Optical Flow Computation , 2006 .