A low–order unstructured–mesh approach for computational electromagnetics in the time domain

Maxwell's curl equations in the time domain are solved using an explicit linear finite–element approach implemented on unstructured tetrahedral meshes. For the simulation of scattering problems, a perfectly matched layer is added at the artificial far–field boundary, created by the truncation of the physical domain prior to the numerical solution. The complete solution procedure is parallelized. The computational challenges that are encountered when attempting simulations at higher frequencies suggest that the implementation of a hybrid algorithm could have certain advantages. The hybrid approach adopted uses a combination of the finite–element procedure and the well–known low operation count/low storage finite–difference time–domain method. Examples are included to demonstrate the numerical performance of the techniques that are described.

[1]  Nigel P. Weatherill,et al.  Parallel processing for the simulation of problems involving scattering of electromagnetic waves , 1998 .

[2]  George Karypis,et al.  Multilevel k-way Partitioning Scheme for Irregular Graphs , 1998, J. Parallel Distributed Comput..

[3]  Benoit Petitjean,et al.  Finite element solvers for radar cross-section (RCS) calculations , 1992 .

[4]  L. Demkowicz,et al.  Modeling of electromagnetic absorption/scattering problems using hp-adaptive finite elements , 1998 .

[5]  S. Giuliani,et al.  A simple method to generate high-order accurate convection operators for explicit schemes based on linear finite elements , 1981 .

[6]  C. Balanis Advanced Engineering Electromagnetics , 1989 .

[7]  Jaime Peraire,et al.  A time domain unstructured grid approach to the simulation of electromagnetic scattering in piecewise homogeneous media , 1996 .

[8]  N. Weatherill,et al.  Efficient three‐dimensional Delaunay triangulation with automatic point creation and imposed boundary constraints , 1994 .

[9]  Guillaume Houzeaux,et al.  A Chimera method based on a Dirichlet/Neumann(Robin) coupling for the Navier–Stokes equations , 2003 .

[10]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[11]  P. L. George,et al.  Automatic Mesh Generation: Application to Finite Element Methods , 1992 .

[12]  Jean-Pierre BÉrenger Couche Absorbante Parfaitement AdaptÉe Pour la Simulation de L’espace Libre Dans les Logiciels aux DiffÉrences Finies , 1996 .

[13]  Shan Zhao,et al.  DSC time-domain solution of Maxwell's equations , 2003 .

[14]  Frederic D. R. Bonnet,et al.  Berenger absorbing boundary condition with time finite-volume scheme for triangular meshes , 1997 .

[15]  Jan S. Hesthaven,et al.  High-order accurate methods in time-domain computational electromagnetics: A review , 2003 .

[16]  Loula Fezoui,et al.  A Parallel Time-Domain Maxwell Solver Using Upwind Schemes and Triangular Meshes , 1993, IMPACT Comput. Sci. Eng..

[17]  Gunnar Ledfelt,et al.  Hybrid Time-Domain Methods and Wire Models for Computational Electromagnetics , 2001 .

[18]  J. Hesthaven,et al.  Nodal high-order methods on unstructured grids , 2002 .

[19]  Nigel P. Weatherill,et al.  Arbitrary order edge elements for electromagnetic scattering simulations using hybrid meshes and a PML , 2002 .

[20]  J. S. T. W. H. and,et al.  High-order/spectral methods on unstructured grids I. Time-domain solution of Maxwell's equations , 2001 .

[21]  Nigel P. Weatherill,et al.  Hybrid methods for electromagnetic scattering simulations on overlapping grids , 2003 .

[22]  Vijaya Shankar,et al.  Computation of electromagnetic scattering and radiation using a time-domain finite-volume discretization procedure , 1991 .

[23]  Ruey-Beei Wu,et al.  Hybrid finite-difference time-domain modeling of curved surfaces using tetrahedral edge elements , 1997 .

[24]  Nigel P. Weatherill,et al.  A PARALLEL FRAMEWORK FOR MULTIDISCIPLINARY AEROSPACE ENGINEERING SIMULATIONS USING UNSTRUCTURED MESHES , 1999 .

[25]  Eric Darve,et al.  Advanced structured unstructured solver for electromagnetic scattering from multimaterial objects , 1997 .

[26]  O. Zienkiewicz,et al.  Finite elements and approximation , 1983 .

[27]  Nigel P. Weatherill,et al.  The simulation of electromagnetic scattering in piecewise homogeneous media using unstructured grids , 2000 .

[28]  Jean-Pierre BÉrenger,et al.  A perfectly matched layer for free-space simulation in finite-difference computer codes , 1996 .

[29]  R. A. Nicolaides,et al.  Spurious fields in time-domain computations of scattering problems , 1997 .

[30]  B. G. Larwood,et al.  Aerospace simulations on parallel computers using unstructured grids , 2002 .

[31]  J. Donea A Taylor–Galerkin method for convective transport problems , 1983 .

[32]  J. Peraire,et al.  An unstructured grid algorithm for the solution of Maxwell's equations in the time domain , 1994 .

[33]  Thomas Rylander,et al.  Stable FEM-FDTD hybrid method for Maxwell's equations , 2000 .

[34]  R. Mittra,et al.  Time-domain (FE/FDTD) technique for solving complex electromagnetic problems , 1998 .

[35]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[36]  J Peiró Surface Grid Generation , 1998 .

[37]  J. Peraire,et al.  UNSTRUCTURED TETRAHEDRAL MESH GENERATION FOR THREE-DIMENSIONAL VISCOUS FLOWS , 1996 .

[38]  I. Babuska,et al.  Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimensions , 1999 .

[39]  Fredrik Edelvik,et al.  A comparison of time‐domain hybrid solvers for complex scattering problems , 2002 .

[40]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[41]  Nigel P. Weatherill,et al.  The development of an hp -adaptive finite element procedure for electromagnetic scattering problems , 2003 .

[42]  J Peraire,et al.  Advancing Front Grid Generation , 1998 .

[43]  Frederik Edelvik,et al.  Hybrid Solvers for the Maxwell Equations in Time-Domain , 2002 .