Qibo: a framework for quantum simulation with hardware acceleration

We present Qibo, a new open-source software for fast evaluation of quantum circuits and adiabatic evolution which takes full advantage of hardware accelerators. The growing interest in quantum computing and the recent developments of quantum hardware devices motivates the development of new advanced computational tools focused on performance and usage simplicity. In this work we introduce a new quantum simulation framework that enables developers to delegate all complicated aspects of hardware or platform implementation to the library so they can focus on the problem and quantum algorithms at hand. This software is designed from scratch with simulation performance, code simplicity and user friendly interface as target goals. It takes advantage of hardware acceleration such as multi-threading CPU, single GPU and multi-GPU devices.

[1]  Gilles Brassard,et al.  Tight bounds on quantum searching , 1996, quant-ph/9605034.

[2]  Rupak Biswas,et al.  A flexible high-performance simulator for verifying and benchmarking quantum circuits implemented on real hardware , 2018, npj Quantum Information.

[3]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[4]  G. Brassard,et al.  Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.

[5]  Diego Garc'ia-Mart'in,et al.  Measuring the Tangle of Three-Qubit States , 2020, Entropy.

[6]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[7]  Diego Garc'ia-Mart'in,et al.  Quantum unary approach to option pricing , 2019, Physical Review A.

[8]  Ryan LaRose,et al.  Distributed Memory Techniques for Classical Simulation of Quantum Circuits , 2018, ArXiv.

[9]  H. Neven,et al.  Simulation of low-depth quantum circuits as complex undirected graphical models , 2017, 1712.05384.

[10]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[11]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[12]  Nathan Killoran,et al.  PennyLane: Automatic differentiation of hybrid quantum-classical computations , 2018, ArXiv.

[13]  Alán Aspuru-Guzik,et al.  Quantum autoencoders for efficient compression of quantum data , 2016, 1612.02806.

[14]  D. Coppersmith An approximate Fourier transform useful in quantum factoring , 2002, quant-ph/0201067.

[15]  Seth Lloyd,et al.  Quantum embeddings for machine learning , 2020 .

[16]  J. Latorre,et al.  Scaling of variational quantum circuit depth for condensed matter systems , 2020, Quantum.

[17]  Yaoyun Shi,et al.  Classical Simulation of Intermediate-Size Quantum Circuits , 2018, 1805.01450.

[18]  David Gosset,et al.  Improved Classical Simulation of Quantum Circuits Dominated by Clifford Gates. , 2016, Physical review letters.

[19]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[20]  Adam Kelly,et al.  Simulating Quantum Computers Using OpenCL , 2018, 1805.00988.

[21]  Thomas Häner,et al.  0.5 Petabyte Simulation of a 45-Qubit Quantum Circuit , 2017, SC17: International Conference for High Performance Computing, Networking, Storage and Analysis.

[22]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[23]  Raymond H. Putra,et al.  Quantum computing simulator on a heterogenous HPC system , 2019, CF.

[24]  Zhimin Wang,et al.  A quantum circuit simulator and its applications on Sunway TaihuLight supercomputer , 2020, Scientific Reports.

[25]  Aram Wettroth Harrow,et al.  Simulated Quantum Annealing Can Be Exponentially Faster Than Classical Simulated Annealing , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[26]  Tyson Jones,et al.  QuEST and High Performance Simulation of Quantum Computers , 2018, Scientific Reports.

[28]  Igor L. Markov,et al.  Simulating Quantum Computation by Contracting Tensor Networks , 2008, SIAM J. Comput..

[29]  A. Garcia-Saez,et al.  Addressing hard classical problems with Adiabatically Assisted Variational Quantum Eigensolvers , 2018, 1806.02287.

[30]  Nick Knupffer Intel Corporation , 2018, The Grants Register 2019.

[31]  Xia Yang,et al.  64-qubit quantum circuit simulation. , 2018, Science bulletin.

[32]  John A. Gunnels,et al.  Pareto-Efficient Quantum Circuit Simulation Using Tensor Contraction Deferral , 2017 .

[33]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[34]  John E. Stone,et al.  OpenCL: A Parallel Programming Standard for Heterogeneous Computing Systems , 2010, Computing in Science & Engineering.

[35]  Masoud Mohseni,et al.  TensorFlow Quantum: A Software Framework for Quantum Machine Learning , 2020, ArXiv.

[36]  Thomas Kohler,et al.  Time-evolution methods for matrix-product states , 2019, Annals of Physics.

[37]  Algorithms and Architectures for Parallel Processing , 2015, Lecture Notes in Computer Science.

[38]  Lov K. Grover Quantum Computers Can Search Rapidly by Using Almost Any Transformation , 1998 .

[39]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[40]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[41]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[42]  I. Meyerov,et al.  Simulating quantum dynamics: Evolution of algorithms in the HPC context , 2020, 2005.04681.

[43]  Thomas Lippert,et al.  Massively parallel quantum computer simulator , 2006, Comput. Phys. Commun..

[44]  C. G. Almudever,et al.  Realistic simulation of quantum computation using unitary and measurement channels , 2020, 2005.06337.

[45]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[46]  Lei Wang,et al.  Yao.jl: Extensible, Efficient Framework for Quantum Algorithm Design , 2019, Quantum.

[47]  Matthias Troyer,et al.  ProjectQ: An Open Source Software Framework for Quantum Computing , 2016, ArXiv.

[48]  Matthias Möller,et al.  : A Cross-Platform Programming Framework for Quantum-Accelerated Scientific Computing , 2020, ICCS.

[49]  Tarrach,et al.  Generalized schmidt decomposition and classification of three-quantum-Bit states , 2000, Physical Review Letters.

[50]  Marc Manzano,et al.  Quantum search for scaled hash function preimages , 2020, Quantum Information Processing.

[51]  Richard M. Karp,et al.  On the Computational Complexity of Combinatorial Problems , 1975, Networks.

[52]  Alán Aspuru-Guzik,et al.  qTorch: The quantum tensor contraction handler , 2017, PloS one.

[53]  Alán Aspuru-Guzik,et al.  qHiPSTER: The Quantum High Performance Software Testing Environment , 2016, ArXiv.

[54]  William J. Zeng,et al.  A Practical Quantum Instruction Set Architecture , 2016, ArXiv.

[55]  George Bosilca,et al.  Open MPI: A High-Performance, Heterogeneous MPI , 2006, 2006 IEEE International Conference on Cluster Computing.

[56]  Travis E. Oliphant,et al.  Guide to NumPy , 2015 .

[57]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[58]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[59]  Diego Garc'ia-Mart'in,et al.  Quantum singular value decomposer , 2019, 1905.01353.

[60]  Jiabin Yuan,et al.  Quantum Computer Simulation on Multi-GPU Incorporating Data Locality , 2015, ICA3PP.

[61]  Kevin Skadron,et al.  Scalable parallel programming , 2008, 2008 IEEE Hot Chips 20 Symposium (HCS).

[62]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[63]  Lambert M. Surhone,et al.  Q (programming language) , 2010 .

[64]  Richard L. Graham,et al.  Open MPI: A Flexible High Performance MPI , 2005, PPAM.

[65]  Robert Wille,et al.  Advanced Simulation of Quantum Computations , 2017, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[66]  Tyson Jones,et al.  QuESTlink—Mathematica embiggened by a hardware-optimised quantum emulator , 2019, Quantum Science and Technology.

[67]  Jianqiang Huang,et al.  HpQC: A New Efficient Quantum Computing Simulator , 2020, ICA3PP.

[68]  Fabio Baruffa,et al.  Intel Quantum Simulator: a cloud-ready high-performance simulator of quantum circuits , 2020, Quantum Science and Technology.

[69]  Jos'e I. Latorre,et al.  Data re-uploading for a universal quantum classifier , 2019, Quantum.

[70]  Andrew W. Cross,et al.  Quantum optimization using variational algorithms on near-term quantum devices , 2017, Quantum Science and Technology.