Topological features in the ferromagnetic Weyl semimetal CeAlSi: Role of domain walls

In the ferromagnetic Weyl semimetal CeAlSi both space-inversion and time-reversal symmetries are broken. We use external pressure as an effective tuning parameter and relate three observations to the presence of a nontrivial topology in its ferromagnetic regime: an exceptional temperature response of the quantum oscillations amplitude, the presence of an anomalous Hall effect (AHE), and the existence of an unusual loop Hall effect (LHE). We find a suppression of the AHE and the LHE with increasing pressure, while the Curie temperature is enhanced. The magnetic structure and the electronic bands exhibit only a negligible pressure effect suggesting the importance of the domain wall landscape for the topological behavior in CeAlSi.

[1]  S. Yuan,et al.  Shubnikov–de Haas oscillations and nontrivial topological states in Weyl semimetal candidate SmAlSi , 2021, Journal of physics. Condensed matter : an Institute of Physics journal.

[2]  J. Gaudet,et al.  Weyl-mediated helical magnetism in NdAlSi , 2021, Nature Materials.

[3]  A. Taylor,et al.  Topological superconducting domain walls in magnetic Weyl semimetals , 2021, 2106.02215.

[4]  J. Orenstein,et al.  Mapping domain-wall topology in the magnetic Weyl semimetal CeAlSi , 2021, Physical Review B.

[5]  S. Parkin,et al.  Chiral spintronics , 2021, Nature Reviews Physics.

[6]  J. Gaudet,et al.  Noncollinear ferromagnetic Weyl semimetal with anisotropic anomalous Hall effect , 2021 .

[7]  L. Pi,et al.  Multiple Weyl fermions in the noncentrosymmetric semimetal LaAlSi , 2021, 2102.05558.

[8]  H. Yang,et al.  Picoscale Magnetoelasticity Governs Heterogeneous Magnetic Domains in a Noncentrosymmetric Ferromagnetic Weyl Semimetal , 2020, Advanced Quantum Technologies.

[9]  Yihong Wu,et al.  Origin and enhancement of the spin Hall angle in the Weyl semimetals LaAlSi and LaAlGe , 2020, Physical Review B.

[10]  F. Suekane Quantum Oscillations , 2021 .

[11]  S. Paschen,et al.  Quantum phases driven by strong correlations , 2020, Nature Reviews Physics.

[12]  Daniel S. Sanchez,et al.  Observation of Weyl fermions in a magnetic non-centrosymmetric crystal , 2020, Nature Communications.

[13]  M. Dressel,et al.  Two Linear Regimes in Optical Conductivity of a Type-I Weyl Semimetal: The Case of Elemental Tellurium. , 2020, Physical review letters.

[14]  S. Tsirkin,et al.  Magnetism and anomalous transport in the Weyl semimetal PrAlGe: possible route to axial gauge fields , 2020, npj Quantum Materials.

[15]  E. Pomjakushina,et al.  Topological Magnetic Phase in the Candidate Weyl Semimetal CeAlGe. , 2020, Physical review letters.

[16]  S. Paschen,et al.  Weyl-Kondo semimetals in nonsymmorphic systems , 2019, Physical Review B.

[17]  D. Graf,et al.  Transition from intrinsic to extrinsic anomalous Hall effect in the ferromagnetic Weyl semimetal PrAlGe1−xSix , 2019, APL Materials.

[18]  Benedikt Ernst,et al.  Discovery of topological Weyl fermion lines and drumhead surface states in a room temperature magnet , 2019, Science.

[19]  Z. K. Liu,et al.  Magnetic Weyl semimetal phase in a Kagomé crystal , 2019, Science.

[20]  L. Balents,et al.  Singular angular magnetoresistance in a magnetic nodal semimetal , 2019, Science.

[21]  C. Felser,et al.  Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2 , 2019, Science.

[22]  M. Smidman,et al.  Anomalous quantum oscillations and evidence for a non-trivial Berry phase in SmSb , 2018, npj Quantum Materials.

[23]  J. Higgins,et al.  Single-crystal investigation of the proposed type-II Weyl semimetal CeAlGe , 2018, Physical Review B.

[24]  Y. Tokura,et al.  Spontaneous Hall effect in the Weyl semimetal candidate of all-in all-out pyrochlore iridate , 2018, Nature Communications.

[25]  Hai-Zhou Lu,et al.  Towards the manipulation of topological states of matter: a perspective from electron transport. , 2018, Science bulletin.

[26]  Su-Yang Xu,et al.  Magnetic and noncentrosymmetric Weyl fermion semimetals in the R AlGe family of compounds (R =rare earth ) , 2016, 1604.02124.

[27]  E. J. Mele,et al.  Weyl and Dirac semimetals in three-dimensional solids , 2017, 1705.01111.

[28]  Takeshi Kondo,et al.  Evidence for magnetic Weyl fermions in a correlated metal. , 2017, Nature materials.

[29]  Binghai Yan,et al.  Symmetry demanded topological nodal-line materials , 2017, 1707.04523.

[30]  C. Felser,et al.  Experimental signatures of the mixed axial–gravitational anomaly in the Weyl semimetal NbP , 2017, Nature.

[31]  Su-Yang Xu,et al.  Discovery of Lorentz-violating type II Weyl fermions in LaAlGe , 2017, Science Advances.

[32]  Q. Gibson,et al.  A pressure-induced topological phase with large Berry curvature in Pb1−xSnxTe , 2016, Science Advances.

[33]  Binghai Yan,et al.  Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn , 2016, New Journal of Physics.

[34]  C. Felser,et al.  Signature of type-II Weyl semimetal phase in MoTe2 , 2016, Nature Communications.

[35]  Claudia Felser,et al.  Topological Materials: Weyl Semimetals , 2016, 1611.04182.

[36]  C. Felser,et al.  Pressure tuning the Fermi surface topology of the Weyl semimetal NbP , 2016, 1604.05502.

[37]  K. Nomura,et al.  Voltage-driven magnetization switching and spin pumping in Weyl semimetals , 2016, 1604.03326.

[38]  C. M. Wang,et al.  Anomalous Phase Shift of Quantum Oscillations in 3D Topological Semimetals. , 2016, Physical review letters.

[39]  Su-Yang Xu,et al.  Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal , 2016, Nature Communications.

[40]  C. Felser,et al.  Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP , 2015, Nature Communications.

[41]  S. Borisenko Time-reversal symmetry breaking type II Weyl state in YbMnBi 2 , 2016 .

[42]  C. Felser,et al.  Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family. , 2016, Nature materials.

[43]  N. Tamura,et al.  Mobile metallic domain walls in an all-in-all-out magnetic insulator , 2015, Science.

[44]  C. Felser,et al.  Weyl semimetal phase in the non-centrosymmetric compound TaAs , 2015, Nature Physics.

[45]  Su-Yang Xu,et al.  Experimental discovery of a topological Weyl semimetal state in TaP , 2015, Science Advances.

[46]  Su-Yang Xu,et al.  A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class , 2015, Nature Communications.

[47]  X. Dai,et al.  Observation of the Chiral-Anomaly-Induced Negative Magnetoresistance in 3D Weyl Semimetal TaAs , 2015, 1503.01304.

[48]  Juan Liu,et al.  Quantum Oscillations, Thermoelectric Coefficients, and the Fermi Surface of Semimetallic WTe2. , 2015, Physical review letters.

[49]  C. Felser,et al.  Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP , 2015, Nature Physics.

[50]  Shuang Jia,et al.  Discovery of a Weyl fermion semimetal and topological Fermi arcs , 2015, Science.

[51]  X. Dai,et al.  Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides , 2014, 1501.00060.

[52]  S. Murakami,et al.  Weyl Node and Spin Texture in Trigonal Tellurium and Selenium. , 2014, Physical review letters.

[53]  Q. Gibson,et al.  Large, non-saturating magnetoresistance in WTe2 , 2014, Nature.

[54]  Y. Yamaji,et al.  Metallic Interface Emerging at Magnetic Domain Wall of Antiferromagnetic Insulator---Fate of Extinct Weyl Electrons , 2013, 1306.2022.

[55]  A. Sharma,et al.  Oscillations in magnetocaloric effect and magnetic properties of RE2Al3Si2 (for RE=Dy, Ho and Er) and REAlSi (for RE=Ce and Pr) , 2007 .

[56]  Z. Fisk,et al.  Ternary rare-earth alumo-silicides—single-crystal growth from Al flux, structural and physical properties , 2005 .

[57]  S. Pukas,et al.  Crystal structures of the RAlSi and RAlGe compounds , 2004 .

[58]  C. Godart,et al.  The systems Ce-Al-(Si, Ge) : Phase equilibria and physical properties , 1998 .

[59]  J Singleton,et al.  The importance of edge states in the quantum Hall regime of the organic conductor , 1997 .

[60]  P. Paufler Tensor properties of crystals , 1996 .

[61]  D. Shoenberg,et al.  Magnetic Oscillations in Metals , 1984 .