Laplace's Method

The idea behind the Laplace approximation is simple. We assume that an unnormalized probability density P * (x), whose normalizing constant Z P ≡ P * (x) dx (27.1) is of interest, has a peak at a point x 0. We Taylor-expand the logarithm of P * (x)

[1]  L. Tierney,et al.  Accurate Approximations for Posterior Moments and Marginal Densities , 1986 .

[2]  Trevor J. Sweeting,et al.  A framework for Bayesian and likelihood approximations in statistics , 1995 .

[3]  L. Tierney,et al.  Approximate marginal densities of nonlinear functions , 1989 .

[4]  David Lindley,et al.  Bayes Empirical Bayes , 1981 .

[5]  C. Field,et al.  An accurate method for approximate conditional and Bayesian inference about linear regression models from censored data , 1991 .

[6]  L. Tierney,et al.  Fully Exponential Laplace Approximations to Expectations and Variances of Nonpositive Functions , 1989 .

[7]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[8]  Joseph B. Kadane,et al.  Laplace approximations to posterior moments and marginal distributions on circles, spheres, and cylinders , 1991 .

[9]  L. Wasserman,et al.  A Reference Bayesian Test for Nested Hypotheses and its Relationship to the Schwarz Criterion , 1995 .

[10]  Andrew R. Barron,et al.  Information-theoretic asymptotics of Bayes methods , 1990, IEEE Trans. Inf. Theory.

[11]  Nancy Reid,et al.  Saddlepoint Methods and Statistical Inference , 1988 .

[12]  E. Slate Parameterizations for Natural Exponential Families with Quadratic Variance Functions , 1994 .

[13]  R. Kass,et al.  Approximate Bayesian Inference in Conditionally Independent Hierarchical Models (Parametric Empirical Bayes Models) , 1989 .

[14]  A. Erkanli Laplace Approximations for Posterior Expectations When the Mode Occurs at the Boundary of the Parameter Space , 1994 .

[15]  Thomas J. DiCiccio,et al.  On Bartlett adjustments for approximate Bayesian inference , 1993 .

[16]  Richard A. Johnson Asymptotic Expansions Associated with Posterior Distributions , 1970 .

[17]  O. Barndorff-Nielsen On a formula for the distribution of the maximum likelihood estimator , 1983 .

[18]  Robert E. Kass,et al.  Some Diagnostics of Maximum Likelihood and Posterior Nonnormality , 1994 .

[19]  S. Crawford An Application of the Laplace Method to Finite Mixture Distributions , 1994 .

[20]  S. Stigler Laplace's 1774 Memoir on Inverse Probability , 1986 .

[21]  H. Daniels Saddlepoint Approximations in Statistics , 1954 .

[22]  T. Sweeting A Bayesian approach to approximate conditional inference , 1995 .

[23]  Thomas J. DiCiccio,et al.  Approximations of marginal tail probabilities and inference for scalar parameters , 1990 .

[24]  L. C. Hsu A theorem on the asymptotic behavior of a multiple integral , 1948 .

[25]  L. Tierney,et al.  Approximate methods for assessing influence and sensitivity in Bayesian analysis , 1989 .

[26]  L. Wasserman,et al.  The Selection of Prior Distributions by Formal Rules , 1996 .

[27]  B. Efron,et al.  Assessing the accuracy of the maximum likelihood estimator: Observed versus expected Fisher information , 1978 .

[28]  Bing Li,et al.  Laplace expansion for posterior densities of nonlinear functions of parameters , 1992 .

[29]  John S. J. Hsu,et al.  Bayesian Marginal Inference , 1989 .