A Tight Linear Time (1/2)-Approximation for Unconstrained Submodular Maximization

We consider the Unconstrained Submodular Maximization problem in which we are given a non-negative submodular function f : 2N → ℝ+, and the objective is to find a subset S ⊆ N maximizing f(S). This is one of the most basic submodular optimization problems, having a wide range of applications. Some well known problems captured by Unconstrained Submodular Maximization include MaxCut, Max-DiCut, and variants of Max-SAT and maximum facility location. We present a simple randomized linear time algorithm achieving a tight approximation guarantee of 1/2, thus matching the known hardness result of Feige et al. [11]. Our algorithm is based on an adaptation of the greedy approach which exploits certain symmetry properties of the problem. Our method might seem counterintuitive, since it is known that the greedy algorithm fails to achieve any bounded approximation factor for the problem.

[1]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[2]  G. Nemhauser,et al.  On the Uncapacitated Location Problem , 1977 .

[3]  Michel Minoux,et al.  Accelerated greedy algorithms for maximizing submodular set functions , 1978 .

[4]  George L. Nemhauser,et al.  Note--On "Location of Bank Accounts to Optimize Float: An Analytic Study of Exact and Approximate Algorithms" , 1979 .

[5]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[6]  George L. Nemhauser,et al.  The uncapacitated facility location problem , 1990 .

[7]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[8]  G. Nemhauser,et al.  Maximizing a submodular function by integer programming: Polyhedral results for the quadratic case☆ , 1996 .

[9]  Luca Trevisan,et al.  Gadgets, approximation, and linear programming , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[10]  Boris Goldengorin,et al.  The maximization of submodular functions: old and new proofs for the correctness of the dichotomy algorithm , 1999 .

[11]  Maxim Sviridenko,et al.  An 0.828-approximation Algorithm for the Uncapacitated Facility Location Problem , 1999, Discret. Appl. Math..

[12]  G. A. Tijssen,et al.  The Data-Correcting Algorithm for the Minimization of Supermodular Functions , 1999 .

[13]  Uri Zwick,et al.  Combinatorial approximation algorithms for the maximum directed cut problem , 2001, SODA '01.

[14]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[15]  Boris Goldengorin,et al.  A Multilevel Search Algorithm for the Maximization of Submodular Functions Applied to the Quadratic Cost Partition Problem , 2005, J. Glob. Optim..

[16]  Vahab S. Mirrokni,et al.  Maximizing Non-Monotone Submodular Functions , 2011, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[17]  Ryan O'Donnell,et al.  Optimal Inapproximability Results for MAX-CUT and Other 2-Variable CSPs? , 2007, SIAM J. Comput..

[18]  Vahab Mirrokni,et al.  Maximizing Non-Monotone Submodular Functions , 2007, FOCS 2007.

[19]  Jan Vondrák,et al.  Optimal approximation for the submodular welfare problem in the value oracle model , 2008, STOC.

[20]  Lisa Fleischer,et al.  Submodular Approximation: Sampling-based Algorithms and Lower Bounds , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[21]  Vahab S. Mirrokni,et al.  Optimal marketing strategies over social networks , 2008, WWW.

[22]  Jan Vondrák,et al.  Symmetry and Approximability of Submodular Maximization Problems , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[23]  Tim Roughgarden,et al.  Revenue submodularity , 2009, EC '09.

[24]  Hadas Shachnai,et al.  Maximizing submodular set functions subject to multiple linear constraints , 2009, SODA.

[25]  Satoru Iwata,et al.  Submodular Function Minimization under Covering Constraints , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[26]  Jan Vondrák,et al.  Submodular Maximization over Multiple Matroids via Generalized Exchange Properties , 2009, Math. Oper. Res..

[27]  Aaron Roth,et al.  Constrained Non-monotone Submodular Maximization: Offline and Secretary Algorithms , 2010, WINE.

[28]  J. Bilmes,et al.  Cooperative Cuts: Graph Cuts with Submodular Edge Weights , 2010 .

[29]  Jan Vondrák,et al.  Dependent Randomized Rounding via Exchange Properties of Combinatorial Structures , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[30]  Jan Vondrák,et al.  Submodular maximization by simulated annealing , 2010, SODA '11.

[31]  Alper Atamtürk,et al.  Maximizing a class of submodular utility functions , 2011, Math. Program..

[32]  Joseph Naor,et al.  Nonmonotone Submodular Maximization via a Structural Continuous Greedy Algorithm - (Extended Abstract) , 2011, ICALP.

[33]  Joseph Naor,et al.  A Unified Continuous Greedy Algorithm for Submodular Maximization , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[34]  U. Feige,et al.  Maximizing Non-monotone Submodular Functions , 2011 .

[35]  Jan Vondrák,et al.  Maximizing a Monotone Submodular Function Subject to a Matroid Constraint , 2011, SIAM J. Comput..

[36]  Shahar Dobzinski,et al.  From query complexity to computational complexity , 2012, STOC '12.

[37]  Andreas S. Schulz,et al.  Approximating the least core value and least core of cooperative games with supermodular costs , 2013, Discret. Optim..

[38]  Joseph Naor,et al.  Submodular Maximization with Cardinality Constraints , 2014, SODA.

[39]  Allan Borodin,et al.  Bounds on Double-Sided Myopic Algorithms for Unconstrained Non-monotoneSubmodular Maximization , 2013, ISAAC.

[40]  J. Vondrák,et al.  Submodular Function Maximization via the Multilinear Relaxation and Contention Resolution Schemes , 2014 .