Rotation invariant topology coding of 2D and 3D objects using Morse theory

In this paper, we propose a numerical algorithm for extracting the topology of a three-dimensional object (2 dimensional surface) embedded in a three-dimensional space /spl Ropf//sup 3/. The method is based on capturing the topology of a modified Reeb graph by tracking the critical points of a distance function. As such, the approach employs Morse theory in the study of translation, rotation, and scale invariant skeletal graphs. The latter are useful in the representation and classification of objects in /spl Ropf//sup 3/.

[1]  Irina A. Kogan,et al.  Invariant Euler–Lagrange Equations and the Invariant Variational Bicomplex , 2003 .

[2]  Hamid Krim,et al.  3D object representation with topo-geometric shape models , 2005, 2005 13th European Signal Processing Conference.

[3]  Irina A. Kogan,et al.  Inductive Construction of Moving Frames , 2006 .

[4]  Ryan C. Smith,et al.  College Geometry Students Uses of Technology in the Process of Constructing Arguments , 2007 .

[5]  Irina A. Kogan,et al.  The Invariant Variational Bicomplex , 1993 .

[6]  Irina A. Kogan,et al.  Rational invariants of a group action. Construction and rewriting , 2007, J. Symb. Comput..

[7]  Irina Berchenko,et al.  Symmetries of Polynomials , 2000, J. Symb. Comput..

[8]  松本 幸夫 An introduction to Morse theory , 2002 .

[9]  Djamila Aouada,et al.  3D Mixed Invariant and its Application on Object Classification , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[10]  Irina A. Kogan,et al.  Two Algorithms for a Moving Frame Construction , 2003, Canadian Journal of Mathematics.

[11]  Marc Moreno Maza,et al.  Computation of canonical forms for ternary cubics , 2002, ISSAC '02.

[12]  Irina A. Kogan,et al.  Smooth and Algebraic Invariants of a Group Action: Local and Global Constructions , 2007, Found. Comput. Math..

[13]  Anne Verroust-Blondet,et al.  Level set diagrams of polyhedral objects , 1999, SMA '99.

[14]  Tosiyasu L. Kunii,et al.  Constructing a Reeb graph automatically from cross sections , 1991, IEEE Computer Graphics and Applications.

[15]  Irina A. Kogan,et al.  Inductive Approach to Cartan's Moving Frame Method with Applications to Classical Invariant Theory. , 2019, 1909.02055.

[16]  Jesse Freeman,et al.  in Morse theory, , 1999 .

[17]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[18]  H. Piaggio Differential Geometry of Curves and Surfaces , 1952, Nature.