Synergy between intrinsically disordered domains and structured proteins amplifies membrane curvature sensing

[1]  Samuel A. Mihelic,et al.  Entropic Control of Receptor Recycling Using Engineered Ligands. , 2018, Biophysical journal.

[2]  Birthe B. Kragelund,et al.  Functions of intrinsic disorder in transmembrane proteins , 2017, Cellular and Molecular Life Sciences.

[3]  Søren L Pedersen,et al.  Membrane curvature regulates ligand-specific membrane sorting of GPCRs in living cells. , 2017, Nature chemical biology.

[4]  C. Hayden,et al.  Membrane fission by protein crowding , 2017, Proceedings of the National Academy of Sciences.

[5]  J. Valpuesta,et al.  Clathrin Coat Disassembly Illuminates the Mechanisms of Hsp70 Force Generation , 2016, Nature Structural &Molecular Biology.

[6]  Pengyu Y. Ren,et al.  The impact of physiological crowding on the diffusivity of membrane bound proteins. , 2016, Soft matter.

[7]  A. Sorkin,et al.  Dopamine transporter is enriched in filopodia and induces filopodia formation , 2015, Molecular and Cellular Neuroscience.

[8]  M. Sherman,et al.  Intrinsically disordered proteins drive membrane curvature , 2015, Nature Communications.

[9]  Sharon E. Miller,et al.  CALM Regulates Clathrin-Coated Vesicle Size and Maturation by Directly Sensing and Driving Membrane Curvature , 2015, Developmental cell.

[10]  G. Bachand,et al.  Designing lipids for selective partitioning into liquid ordered membrane domains. , 2015, Soft matter.

[11]  Tilman Flock,et al.  Structured and disordered facets of the GPCR fold. , 2014, Current opinion in structural biology.

[12]  A. Callan-Jones,et al.  Membrane shape modulates transmembrane protein distribution. , 2014, Developmental cell.

[13]  F. Brodsky,et al.  A cost–benefit analysis of the physical mechanisms of membrane curvature , 2013, Nature Cell Biology.

[14]  Sandra L Schmid,et al.  Advances in analysis of low signal-to-noise images link dynamin and AP2 to the functions of an endocytic checkpoint. , 2013, Developmental cell.

[15]  R. Pappu,et al.  Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues , 2013, Proceedings of the National Academy of Sciences.

[16]  Peter Tompa,et al.  Structural Disorder Provides Increased Adaptability for Vesicle Trafficking Pathways , 2013, PLoS Comput. Biol..

[17]  A Keith Dunker,et al.  The alphabet of intrinsic disorder , 2013, Intrinsically disordered proteins.

[18]  Alessandro Borgia,et al.  Polymer scaling laws of unfolded and intrinsically disordered proteins quantified with single-molecule spectroscopy , 2012, Proceedings of the National Academy of Sciences.

[19]  Christopher J. Ryan,et al.  Membrane bending by protein–protein crowding , 2012, Nature Cell Biology.

[20]  Adi Pick,et al.  Membrane Fission Is Promoted by Insertion of Amphipathic Helices and Is Restricted by Crescent BAR Domains , 2012, Cell.

[21]  Andrew Callan-Jones,et al.  Nature of curvature coupling of amphiphysin with membranes depends on its bound density , 2011, Proceedings of the National Academy of Sciences.

[22]  A. Hinck,et al.  Dynamic interactions between clathrin and locally structured elements in a disordered protein mediate clathrin lattice assembly. , 2010, Journal of molecular biology.

[23]  S. Keeney,et al.  References and Notes Supporting Online Material Materials and Methods Figs. S1 to S5 Tables S1 and S2 References Movie S1 Fcho Proteins Are Nucleators of Clathrin-mediated Endocytosis , 2022 .

[24]  Wenyu Bu,et al.  I-BAR domains, IRSp53 and filopodium formation. , 2010, Seminars in cell & developmental biology.

[25]  T. Baumgart,et al.  Curvature sensing by the epsin N-terminal homology domain measured on cylindrical lipid membrane tethers. , 2010, Journal of the American Chemical Society.

[26]  B. Różycki,et al.  Membrane Budding , 2010, Cell.

[27]  U. Gether,et al.  Amphipathic motifs in BAR domains are essential for membrane curvature sensing , 2009, The EMBO journal.

[28]  N. Hatzakis,et al.  How curved membranes recruit amphipathic helices and protein anchoring motifs. , 2009, Nature chemical biology.

[29]  Sean M. Hartig,et al.  The F-BAR protein CIP4 promotes GLUT4 endocytosis through bidirectional interactions with N-WASp and Dynamin-2 , 2009, Journal of Cell Science.

[30]  W. Nowicki,et al.  Influence of confinement on conformational entropy of a polymer chain and structure of polymer–nanoparticles complexes , 2009 .

[31]  M. Kozlov,et al.  The hydrophobic insertion mechanism of membrane curvature generation by proteins. , 2008, Biophysical journal.

[32]  J. Groves,et al.  Kinetic control of histidine-tagged protein surface density on supported lipid bilayers. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[33]  Harvey T. McMahon,et al.  Integrating molecular and network biology to decode endocytosis , 2007, Nature.

[34]  Hector H. Huang,et al.  Contour length and refolding rate of a small protein controlled by engineered disulfide bonds. , 2007, Biophysical journal.

[35]  A. Brunger,et al.  Conformation of the synaptobrevin transmembrane domain. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Harvey T. McMahon,et al.  Membrane curvature and mechanisms of dynamic cell membrane remodelling , 2005, Nature.

[37]  Ronald P White,et al.  Calculation of the Entropy of Lattice Polymer Models from Monte Carlo Trajectories. , 2005, Chemical physics letters.

[38]  H. Dyson,et al.  Intrinsically unstructured proteins and their functions , 2005, Nature Reviews Molecular Cell Biology.

[39]  Corinne J. Smith,et al.  Natively unfolded domains in endocytosis: hooks, lines and linkers , 2004, EMBO reports.

[40]  P. Evans,et al.  Adaptors for clathrin coats: structure and function. , 2004, Annual review of cell and developmental biology.

[41]  M. Matsuda,et al.  A Novel Dynamin-associating Molecule, Formin-binding Protein 17, Induces Tubular Membrane Invaginations and Participates in Endocytosis* , 2004, Journal of Biological Chemistry.

[42]  B. Peter,et al.  BAR Domains as Sensors of Membrane Curvature: The Amphiphysin BAR Structure , 2004, Science.

[43]  Ian G. Mills,et al.  Curvature of clathrin-coated pits driven by epsin , 2002, Nature.

[44]  Sanjay Kumar,et al.  Relating interactions between neurofilaments to the structure of axonal neurofilament distributions through polymer brush models. , 2002, Biophysical journal.

[45]  R. Knorr,et al.  Unusual Structural Organization of the Endocytic Proteins AP180 and Epsin 1* , 2002, The Journal of Biological Chemistry.

[46]  George J. Augustine,et al.  Uncoating of Clathrin-Coated Vesicles in Presynaptic Terminals Roles for Hsc70 and Auxilin , 2001, Neuron.

[47]  G. Augustine,et al.  A Conserved Clathrin Assembly Motif Essential for Synaptic Vesicle Endocytosis , 2000, The Journal of Neuroscience.

[48]  V. Uversky,et al.  Why are “natively unfolded” proteins unstructured under physiologic conditions? , 2000, Proteins.

[49]  G. Augustine,et al.  A Role for the Clathrin Assembly Domain of AP180 in Synaptic Vesicle Endocytosis , 1999, The Journal of Neuroscience.

[50]  L. Zheng,et al.  AP180 and AP-2 Interact Directly in a Complex That Cooperatively Assembles Clathrin* , 1999, The Journal of Biological Chemistry.

[51]  R. Lipowsky Bending of Membranes by Anchored Polymers , 1995 .

[52]  H. Erickson,et al.  Reversible unfolding of fibronectin type III and immunoglobulin domains provides the structural basis for stretch and elasticity of titin and fibronectin. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[53]  D. Thirumalai,et al.  Static properties of polymer chains in porous media , 1989 .

[54]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[55]  W. Klein,et al.  Differentiation of neuronal growth cones: specialization of filopodial tips for adhesive interactions. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[56]  H. Kowarzyk Structure and Function. , 1910, Nature.