Synthesis of epitaxial SnxGe1−x alloy films by ion‐assisted molecular beam epitaxy

In this letter, we report the synthesis of epitaxial SnxGe1–x/Ge/Si(001) with compositions up to x=0.34 by ion-assisted molecular beam epitaxy with 30–100 eV Ar+ ions produced by an electron cyclotron resonance ionization source with ion to atom flux ratios of the order of unity in the substrate temperature range of 120–200 °C. High flux low energy ion beam irradiation greatly inhibits Sn segregation without interrupting epitaxy.

[1]  Susanne M. Lee Microstructural stability of metastable amorphous and crystalline Ge1−xSnx alloys , 1994 .

[2]  G. Abstreiter,et al.  Fabrication and properties of epitaxially stabilized Ge/α-Sn heterostructures on Ge(001) , 1992 .

[3]  T. Ito A Theoretical Investigation of the Metastability of Epitaxial α-Sn on a (100) Zinc Blende Substrate , 1992 .

[4]  G. Abstreiter,et al.  Group IV element (Si, Ge and α-Sn) superlattices — low temperature MBE , 1991 .

[5]  A. Kortan,et al.  Epitaxially stabilized GexSn1−x diamond cubic alloys , 1991 .

[6]  H. Gossmann Determination of critical layer thicknesses in IV‐IV‐alloy systems using reflection high energy electron diffraction intensity oscillations: Ge(100)/GexSn1−x , 1990 .

[7]  G. Abstreiter,et al.  Single‐crystal Sn/Ge superlattices on Ge substrates: Growth and structural properties , 1990 .

[8]  W. I. Wang,et al.  Molecular‐beam epitaxial growth of metastable Ge1−xSnx alloys , 1990 .

[9]  B. Cantor,et al.  Manufacture of amorphous GeSn alloys , 1990 .

[10]  A. Kortan,et al.  Structure and stability of metastable α‐Sn , 1989 .

[11]  J. Reno,et al.  Effect of growth conditions on the stability of α‐Sn grown on CdTe by molecular beam epitaxy , 1989 .

[12]  J. Knall,et al.  Incorporation of in by recoil implantation during MBE growth of Si(100) , 1989 .

[13]  Theodore Kaplan,et al.  Continuous growth model for interface motion during alloy solidification , 1988 .

[14]  Jenkins Dw,et al.  Electronic properties of metastable GexSn , 1987 .

[15]  P. M. Raccah,et al.  Growth of single-crystal metastable Ge1-xSnx alloys on Ge(100) and GaAs(100) substrates , 1987 .

[16]  S. Barnett,et al.  Si molecular beam Epitaxy: A model for temperature dependent incorporation probabilities and depth distributions of dopants exhibiting strong surface segregation , 1985 .

[17]  B. Tsaur,et al.  Synthesis of metastable, semiconducting Ge‐Sn alloys by pulsed UV laser crystallization , 1983 .

[18]  Michael J. Aziz,et al.  Model for solute redistribution during rapid solidification , 1982 .

[19]  I. M. Young,et al.  The growth of metastable, heteroepitaxial films of α-Sn by metal beam epitaxy , 1981 .

[20]  T. Soma,et al.  Phase Diagrams of the SiSn and GeSn Systems , 1981 .

[21]  C. D. Thurmond,et al.  Germanium Solidus Curves , 1956 .

[22]  C. D. Thurmond Equilibrium Thermochemistry of Solid and Liquid Alloys of Germanium and of Silicon. I. The Solubility of Ge and Si in Elements of Groups III, IV and V , 1953 .

[23]  W. Klemm,et al.  Über Zweistoffsysteme mit Germanium. I. Germanium/Aluminium, Germanium/Zinn und Germanium/Silicium , 1939 .

[24]  P. Vogl,et al.  Electronic structure and optical properties of short-period α-SnnGem superlattices , 1992 .

[25]  B. I. Craig The thickness dependence of the band gap of α-Sn films , 1992 .

[26]  J. Tsao,et al.  Materials Fundamentals of Molecular Beam Epitaxy , 1992 .

[27]  J. Angilello,et al.  Properties of diamond structure SnGe films grown by molecular beam epitaxy , 1990 .

[28]  Lawrence H. Bennett,et al.  Binary alloy phase diagrams , 1986 .