Microcircuits of the Striatum

The striatum is the major division of the basal ganglia, a group of subcortical nuclei involved in a variety of processes including motor, associative, cognitive and mnemonic functions. The dorsal division of the basal ganglia consists of the striatum, the globus pallidus (GP, external segment of the globus pallidus, or GPe, in primates), entopeduncular nucleus (EP, internal segment of globus pallidus, or GPi, in primates), the subthalamic nucleus (STN), and the substantia nigra (SN). The SN is divided into two main parts, the dorsal pars compacta (SNC), in which the dopaminergic nigrostriatal neurons reside, and the more ventral pars reticulata (SNR). The ventral division of the basal ganglia, which is primarily associated with limbic functions, consists of the ventral striatum or nucleus accumbens, ventral pallidum, and ventral tegemental area.

[1]  H. Kita,et al.  The morphology of globus pallidus projection neurons in the rat: an intracellular staining study , 1994, Brain Research.

[2]  P. Emson,et al.  Restoration of thalamostriatal projections in rat neostriatal grafts: An electron microscopic analysis , 1991, The Journal of comparative neurology.

[3]  P. Somogyi,et al.  Monosynaptic cortical input and local axon collaterals of identified striatonigral neurons. A light and electron microscopic study using the golgi‐peroxidase transport‐degeneration procedure , 1981, The Journal of comparative neurology.

[4]  V. Pickel,et al.  Spiny neurons lacking choline acetyltransferase immunoreactivity are major targets of cholinergic and catecholaminergic terminals in rat striatum , 1990, Journal of neuroscience research.

[5]  J. Bouyer,et al.  Ultrastructural relation between cortical efferents and terminals containing enkephalin-like immunoreactivity in rat neostriatum , 1984, Regulatory Peptides.

[6]  H. Kita,et al.  Intracellular study of rat substantia nigra pars reticulata neurons in an in vitro slice preparation: electrical membrane properties and response characteristics to subthalamic stimulation , 1987, Brain Research.

[7]  J. Wu,et al.  Glutamate decarboxylase‐immunoreactive structures in the rat neostriatum: A correlated light and electron microscopic study including a combination of Golgi impregnation with immunocytochemistry , 1985, The Journal of comparative neurology.

[8]  A. Parent,et al.  Cortical input to parvalbumin-immunoreactive neurones in the putamen of the squirrel monkey , 1992, Brain Research.

[9]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. II. Visual responses related to fixation of gaze. , 1983, Journal of neurophysiology.

[10]  Charles J. Wilson,et al.  Striatal interneurones: chemical, physiological and morphological characterization , 1995, Trends in Neurosciences.

[11]  P. Somogyi,et al.  A type of aspiny neuron in the rat neostriatum accumulates [3H]γ‐aminobutyric acid: Combination of golgi‐staining, autoradiography, and electron microscopy , 1983, The Journal of comparative neurology.

[12]  Charles J. Wilson,et al.  Spontaneous subthreshold membrane potential fluctuations and action potential variability of rat corticostriatal and striatal neurons in vivo. , 1997, Journal of neurophysiology.

[13]  G. Edelman,et al.  Role of nitric oxide in NMDA-evoked release of [3H]-dopamine from striatal slices. , 1992, Neuroreport.

[14]  J. Bolam,et al.  Synaptic organisation of the basal ganglia , 2000, Journal of anatomy.

[15]  J. Bolam,et al.  Electron microscopic analysis of D1 and D2 dopamine receptor proteins in the dorsal striatum and their synaptic relationships with motor corticostriatal afferents , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  J. Deniau,et al.  Disinhibition as a basic process in the expression of striatal functions , 1990, Trends in Neurosciences.

[17]  J. Penney,et al.  The functional anatomy of basal ganglia disorders , 1989, Trends in Neurosciences.

[18]  A M Graybiel,et al.  Cortically Driven Immediate-Early Gene Expression Reflects Modular Influence of Sensorimotor Cortex on Identified Striatal Neurons in the Squirrel Monkey , 1997, The Journal of Neuroscience.

[19]  Charles J. Wilson,et al.  The generation of natural firing patterns in neostriatal neurons. , 1993, Progress in brain research.

[20]  J. E. Vaughn,et al.  The GABA Neurons and their axon terminals in rat corpus striatum as demonstrated by GAD immunocytochemistry , 1979, The Journal of comparative neurology.

[21]  P. Somogyi,et al.  Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons , 1995, Nature.

[22]  J. Bolam,et al.  Synaptology of the nigrostriatal projection in relation to the compartmental organization of the neostriatum in the rat , 1997, Neuroscience.

[23]  T. Powell,et al.  The site of termination of afferent fibres in the caudate nucleus. , 1971, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[24]  A. D. Smith,et al.  Identification of synaptic terminals of thalamic or cortical origin in contact with distinct medium‐size spiny neurons in the rat neostriatum , 1988, The Journal of comparative neurology.

[25]  T. F. Freund,et al.  Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines , 1984, Neuroscience.

[26]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. III. Memory-contingent visual and saccade responses. , 1983, Journal of neurophysiology.

[27]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. I. Relation of visual and auditory responses to saccades. , 1983, Journal of neurophysiology.

[28]  P. Somogyi,et al.  Synaptic connections of enkephalin-immunoreactive nerve terminals in the neostriatum: a correlated light and electron microscopic study , 1982, Journal of neurocytology.

[29]  J. Tepper,et al.  Inhibitory control of neostriatal projection neurons by GABAergic interneurons , 1999, Nature Neuroscience.

[30]  Y. Smith,et al.  The subthalamic nucleus and the external pallidum: two tightly interconnected structures that control the output of the basal ganglia in the monkey , 1996, Neuroscience.

[31]  L. Iversen,et al.  The use of autoradiographic techniques for the identification and mapping of transmitter-specific neurones in the brain. , 1974, Life sciences.

[32]  J. Bouyer,et al.  Chemical and structural analysis of the relation between cortical inputs and tyrosine hydroxylase-containing terminals in rat neostriatum , 1984, Brain Research.

[33]  Charles J. Wilson,et al.  Parvalbumin‐containing gabaergic interneurons in the rat neostriatum , 1990, The Journal of comparative neurology.

[34]  J. Bolam,et al.  The postsynaptic targets of substance P-immunoreactive terminals in the rat neostriatum with particular reference to identified spiny striatonigral neurons , 2004, Experimental Brain Research.

[35]  Y. Smith,et al.  Differential synaptic innervation of striatofugal neurones projecting to the internal or external segments of the globus pallidus by thalamic afferents in the squirrel monkey , 1996, The Journal of comparative neurology.

[36]  C. Spyraki,et al.  Neuronal release of somatostatin in the rat striatum: An in vivo microdialysis study , 1993, Neuroscience.

[37]  J. Bolam,et al.  Cholinergic synaptic input to different parts of spiny striatonigral neurons in the rat , 1988, The Journal of comparative neurology.

[38]  Charles J. Wilson,et al.  Fine structure and synaptic connections of the common spiny neuron of the rat neostriatum: A study employing intracellular injection of horseradish peroxidase , 1980 .

[39]  Charles J. Wilson,et al.  Surround inhibition among projection neurons is weak or nonexistent in the rat neostriatum. , 1994, Journal of neurophysiology.

[40]  P. Somogyi,et al.  Localization of substance P-like immunoreactivity in neurons and nerve terminals in the neostriatum of the rat: a correlated light and electron microscopic study , 1983, Journal of neurocytology.

[41]  D. Reis,et al.  Immunocytochemical localization of enkephalin in the neostriatum of rat brain: A light and electron microscopic study , 1980, The Journal of comparative neurology.

[42]  D. Oorschot Total number of neurons in the neostriatal, pallidal, subthalamic, and substantia nigral nuclei of the rat basal ganglia: A stereological study using the cavalieri and optical disector methods , 1996, The Journal of comparative neurology.

[43]  B. D. Bennett,et al.  Synaptic input and output of parvalbumin-immunoreactive neurons in the neostriatum of the rat , 1994, Neuroscience.

[44]  Martin Lévesque,et al.  Single‐axon tracing study of neurons of the external segment of the globus pallidus in primate , 2000 .

[45]  Y. Smith,et al.  Convergence of synaptic terminals from the striatum and the globus pallidus onto single neurones in the substantia nigra and the entopeduncular nucleus. , 1993, Progress in brain research.

[46]  K. Clark,et al.  The role of the subthalamic nucleus in the response of globus pallidus neurons to stimulation of the prelimbic and agranular frontal cortices in rats , 2004, Experimental Brain Research.

[47]  Y. Smith,et al.  Microcircuitry of the direct and indirect pathways of the basal ganglia. , 1998, Neuroscience.

[48]  M. Frotscher,et al.  Termination of cortical afferents on identified neurons in the caudate nucleus of the cat , 1981, Experimental Brain Research.

[49]  K. Johnson,et al.  Inhibitory Effects of Nitric Oxide on the Uptake of [3H]Dopamine and [3H]Glutamate by Striatal Synaptosomes , 1994, Journal of neurochemistry.

[50]  D. Plenz,et al.  Up and Down States in Striatal Medium Spiny Neurons Simultaneously Recorded with Spontaneous Activity in Fast-Spiking Interneurons Studied in Cortex–Striatum–Substantia Nigra Organotypic Cultures , 1998, The Journal of Neuroscience.

[51]  T. Powell,et al.  The structure of the caudate nucleus of the cat: light and electron microscopy. , 1971, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[52]  N. Aronin,et al.  Light and electron microscopic localization of immunoreactive Leu- enkephalin in the monkey basal ganglia , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[53]  D. R. Smith,et al.  Behavioural assessment of mice lacking D1A dopamine receptors , 1998, Neuroscience.

[54]  J. Bolam,et al.  Subcellular and subsynaptic distribution of the NR1 subunit of the NMDA receptor in the neostriatum and globus pallidus of the rat: co‐localization at synapses with the GluR2/3 subunit of the AMPA receptor , 1998, The European journal of neuroscience.

[55]  C. Wilson,et al.  Mechanisms Underlying Spontaneous Oscillation and Rhythmic Firing in Rat Subthalamic Neurons , 1999, The Journal of Neuroscience.

[56]  S T Kitai,et al.  Version unknown SOURCE ( OR PART OF THE FOLLOWING SOURCE ) : Type article Title Hippocampal inputs to identified neurons in an in vitro slice preparation of the rat nucleus accumbens : evidence for feed-forward inhibition , 2003 .

[57]  P. Somogyi,et al.  Cellular, Subcellular, and Subsynaptic Distribution of AMPA-Type Glutamate Receptor Subunits in the Neostriatum of the Rat , 1997, The Journal of Neuroscience.

[58]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. IV. Relation of substantia nigra to superior colliculus. , 1983, Journal of neurophysiology.

[59]  S. Sesack,et al.  Cellular basis for interactions between catecholaminergic afferents and neurons containing leu‐enkephalin‐like immunoreactivity in rat caudate‐putamen nuclei , 1992, Journal of neuroscience research.

[60]  A. Parent,et al.  Synaptic relationships between dopaminergic afferents and cortical or thalamic input in the sensorimotor territory of the striatum in monkey , 1994, The Journal of comparative neurology.

[61]  Charles J. Wilson,et al.  Connectivity and Convergence of Single Corticostriatal Axons , 1998, The Journal of Neuroscience.

[62]  L. Tremblay,et al.  Responses of pallidal neurons to striatal stimulation in intact waking monkeys , 1989, Brain Research.

[63]  A. D. Smith,et al.  Synaptic Connections Between Spiny Neurons of the Direct and Indirect Pathways in the Neostriatum of the Rat: Evidence from Dopamine Receptor and Neuropeptide Immunostaining , 1996, The European journal of neuroscience.

[64]  J. Bolam,et al.  Selective Innervation of Neostriatal Interneurons by a Subclass of Neuron in the Globus Pallidus of the Rat , 1998, The Journal of Neuroscience.

[65]  W. T. Thach,et al.  Basal ganglia intrinsic circuits and their role in behavior , 1993, Current Opinion in Neurobiology.

[66]  A. Liotta,et al.  Ultrastructural localization and biochemical features of immunoreactive LEU-enkephalin in monkey dorsal horn , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[67]  Charles J. Wilson,et al.  Membrane potential synchrony of simultaneously recorded striatal spiny neurons in vivo , 1998, Nature.

[68]  A. Michel,et al.  Evidence that Nitric Oxide Causes Calcium‐Independent Release of [3H]Dopamine from Rat Striatum In Vitro , 1996, Journal of neurochemistry.

[69]  Y. Kubota,et al.  Neostriatal GABAergic interneurones contain NOS, calretinin or parvalbumin. , 1993, Neuroreport.

[70]  H. Kita,et al.  The cortico-nigral projection in the rat: an anterograde tracing study with biotinylated dextran amine , 1994, Brain Research.

[71]  H. Kita Responses of globus pallidus neurons to cortical stimulation: intracellular study in the rat , 1992, Brain Research.

[72]  A. D. Smith,et al.  Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: Light and electron microscopy , 1995, Neuroscience.

[73]  Y. Kawaguchi Neostriatal cell subtypes and their functional roles , 1997, Neuroscience Research.

[74]  T. Powell,et al.  The termination of fibres from the cerebral cortex and thalamus upon dendritic spines in the caudate nucleus: a study with the Golgi method. , 1971, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[75]  Y. Kawaguchi,et al.  Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[76]  H. Kita,et al.  Parvalbumin-immunoreactive neurons in the rat neostriatum: a light and electron microscopic study , 1990, Brain Research.

[77]  A. Mandell New Concepts in Neurotransmitter Regulation , 1973, Springer US.

[78]  A. D. Smith,et al.  The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones , 1990, Trends in Neurosciences.

[79]  H. Kita,et al.  Glutamate decarboxylase immunoreactive neurons in rat neostriatum: their morphological types and populations , 1988, Brain Research.

[80]  H. Kita Glutamatergic and gabaergic postsynaptic responses of striatal spiny neurons to intrastriatal and cortical stimulation recorded in slice preparations , 1996, Neuroscience.

[81]  K. Kendrick,et al.  Modulation of In Vivo Striatal Transmitter Release by Nitric Oxide and Cyclic GMP , 1994, Journal of neurochemistry.