The neural bases of grapheme-color synesthesia are not localized in real color-sensitive areas.

The subjective experience of color by synesthetes when viewing achromatic letters and numbers supposedly relates to real color experience, as exemplified by the recruitment of the V4 color center observed in some brain imaging studies. Phenomenological reports and psychophysics tests indicate, however, that both experiences are different. Using functional magnetic resonance imaging, we tried to precise the degree of coactivation by real and synesthetic colors, by evaluating each color center individually, and applying adaptation protocols across real and synesthetic colors. We also looked for structural differences between synesthetes and nonsynesthetes. In 10 synesthetes, we found that color areas and retinotopic areas were not activated by synesthetic colors, whatever the strength of synesthetic associations measured objectively for each subject. Voxel-based morphometry revealed no white matter (WM) or gray matter difference in those regions when compared with 25 control subjects. But synesthetes had more WM in the retrosplenial cortex bilaterally. The joint coding of real and synesthetic colors, if it exists, must therefore be distributed rather than localized in the visual cortex. Alternatively, the key to synesthetic color experience might not lie in the color system.

[1]  N Jon Shah,et al.  Assessment of reliability in functional imaging studies , 2003, Journal of magnetic resonance imaging : JMRI.

[2]  Karl J. Friston,et al.  Unified segmentation , 2005, NeuroImage.

[3]  Ivan Toni,et al.  Associating Colours with People: A Case of Chromatic-Lexical Synaesthesia , 2001, Cortex.

[4]  D. Heeger,et al.  Two Retinotopic Visual Areas in Human Lateral Occipital Cortex , 2006, The Journal of Neuroscience.

[5]  R. Cohen Kadosh,et al.  When a line is a number: Color yields magnitude information in a digit-color synesthete , 2006, Neuroscience.

[6]  Karl J. Friston,et al.  A Voxel-Based Morphometric Study of Ageing in 465 Normal Adult Human Brains , 2001, NeuroImage.

[7]  V. Nabokov Speak, Memory : An Autobiography Revisited , 1951 .

[8]  Laurent Lamalle,et al.  fMRI retinotopic mapping at 3 T: benefits gained from correcting the spatial distortions due to static field inhomogeneity. , 2010, Journal of vision.

[9]  W. Singer,et al.  Neuronal Correlates of Colour-Graphemic Synaesthesia: Afmri Study , 2006, Cortex.

[10]  Julian E. Asher,et al.  Diagnosing and Phenotyping Visual Synaesthesia: a Preliminary Evaluation of the Revised Test of Genuineness (TOG-R) , 2006, Cortex.

[11]  J. Simner,et al.  Early detection of markers for synaesthesia in childhood populations. , 2009, Brain : a journal of neurology.

[12]  S. Petersen,et al.  The maturing architecture of the brain's default network , 2008, Proceedings of the National Academy of Sciences.

[13]  Gereon R Fink,et al.  Grapheme-colour synaesthetes show increased grey matter volumes of parietal and fusiform cortex. , 2009, Brain : a journal of neurology.

[14]  Fiona N. Newell,et al.  Familial patterns and the origins of individual differences in synaesthesia , 2008, Cognition.

[15]  M. Sigman,et al.  The neural code for written words: a proposal , 2005, Trends in Cognitive Sciences.

[16]  Daniel Smilek,et al.  The Importance of Individual Differences in Grapheme-Color Synesthesia , 2005, Neuron.

[17]  R. Cytowič Synesthesia: A Union of the Senses , 1989 .

[18]  Michael B. Miller,et al.  of Serendipitous and Unexpected Results Neural Correlates of Interspecies Perspective Taking in the Post-Mortem Atlantic Salmon : An Argument For Proper Multiple Comparisons Correction , 2010 .

[19]  Jamie Ward,et al.  Emotionally mediated synaesthesia , 2004, Cognitive neuropsychology.

[20]  D. Schacter,et al.  The Brain's Default Network , 2008, Annals of the New York Academy of Sciences.

[21]  Jeffrey Heer,et al.  Does Binding of Synesthetic Color to the Evoking Grapheme Require Attention? , 2006, Cortex.

[22]  J. Ward,et al.  A Colorful Albino: The First Documented Case of Synaesthesia, by Georg Tobias Ludwig Sachs in 1812 , 2009, Journal of the history of the neurosciences.

[23]  Michael B. Miller,et al.  How reliable are the results from functional magnetic resonance imaging? , 2010, Annals of the New York Academy of Sciences.

[24]  Jean-Baptiste Cazier,et al.  A whole-genome scan and fine-mapping linkage study of auditory-visual synesthesia reveals evidence of linkage to chromosomes 2q24, 5q33, 6p12, and 12p12. , 2009, American journal of human genetics.

[25]  Jamie Ward,et al.  Seeing Sounds and Hearing Colors: An Event-related Potential Study of Auditory–Visual Synesthesia , 2009, Journal of Cognitive Neuroscience.

[26]  Anina N. Rich,et al.  Neural correlates of imagined and synaesthetic colours , 2006, Neuropsychologia.

[27]  B. Laeng,et al.  Does Color Synesthesia Pose a Paradox for Early-Selection Theories of Attention? , 2004, Psychological science.

[28]  Geoffrey M. Boynton,et al.  Individual Differences among Grapheme-Color Synesthetes: Brain-Behavior Correlations , 2005, Neuron.

[29]  Daniel Smilek,et al.  Five plus two equals yellow , 2000, Nature.

[30]  Miranka Wirth,et al.  Semantic memory involvement in the default mode network: A functional neuroimaging study using independent component analysis , 2011, NeuroImage.

[31]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[32]  Jean-Luc Velay,et al.  Visual presentation of single letters activates a premotor area involved in writing , 2003, NeuroImage.

[33]  S. Baron-Cohen,et al.  Coloured Speech Perception: Is Synaesthesia what Happens when Modularity Breaks Down? , 1993, Perception.

[34]  Lutz Jäncke,et al.  Time course of neural activity correlated with colored-hearing synesthesia. , 2008, Cerebral cortex.

[35]  Lynn C. Robertson,et al.  Synesthesia : perspectives from cognitive neuroscience , 2005 .

[36]  N. Rothen,et al.  Do Synesthetes Have a General Advantage in Visual Search and Episodic Memory? A Case for Group Studies , 2009, PloS one.

[37]  V. Ramachandran,et al.  Synaesthesia? A window into perception, thought and language , 2001 .

[38]  Randolph Blake,et al.  The perceptual reality of synesthetic colors , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Chantal Delon-Martin,et al.  fMRI Retinotopic Mapping—Step by Step , 2002, NeuroImage.

[40]  B. Wandell,et al.  Visual Field Maps in Human Cortex , 2007, Neuron.

[41]  M. Bar Visual objects in context , 2004, Nature Reviews Neuroscience.

[42]  S. Scott,et al.  A Common System for the Comprehension and Production of Narrative Speech , 2007, The Journal of Neuroscience.

[43]  Jason B. Mattingley,et al.  Anomalous perception in synaesthesia: A cognitive neuroscience perspective , 2002, Nature Reviews Neuroscience.

[44]  Alice J. O'Toole,et al.  Theoretical, Statistical, and Practical Perspectives on Pattern-based Classification Approaches to the Analysis of Functional Neuroimaging Data , 2007, Journal of Cognitive Neuroscience.

[45]  Jane E. Joseph,et al.  fMRI correlates of cortical specialization and generalization for letter processing , 2006, NeuroImage.

[46]  Jamie Ward,et al.  Varieties of grapheme-colour synaesthesia: A new theory of phenomenological and behavioural differences , 2007, Consciousness and Cognition.

[47]  S Baron-Cohen,et al.  The physiology of coloured hearing. A PET activation study of colour-word synaesthesia. , 1995, Brain : a journal of neurology.

[48]  Jean Lorenceau,et al.  Pupil dynamics during bistable motion perception. , 2009, Journal of vision.

[49]  Théodore Flournoy Des phénomènes de synopsie (audition colorée) Photismes - schèmes visuels - personnifications, , 1893 .

[50]  Lorin J Elias,et al.  Dissociating semantic and perceptual components of synaesthesia: behavioural and functional neuroanatomical investigations. , 2003, Brain research. Cognitive brain research.

[51]  Jason B. Mattingley,et al.  Unconscious priming eliminates automatic binding of colour and alphanumeric form in synaesthesia , 2001, Nature.

[52]  M. J. Morgan,et al.  Synaesthetic colours do not camouflage form in visual search , 2008, Proceedings of the Royal Society B: Biological Sciences.

[53]  Kaustubh Supekar,et al.  Development of Large-Scale Functional Brain Networks in Children , 2009, NeuroImage.

[54]  Benoit Scherrer,et al.  Distributed Local MRF Models for Tissue and Structure Brain Segmentation , 2009, IEEE Transactions on Medical Imaging.

[55]  R. Maddock The retrosplenial cortex and emotion: new insights from functional neuroimaging of the human brain , 1999, Trends in Neurosciences.

[56]  Romke Rouw,et al.  Neural Basis of Individual Differences in Synesthetic Experiences , 2010, The Journal of Neuroscience.

[57]  John Ashburner,et al.  A fast diffeomorphic image registration algorithm , 2007, NeuroImage.

[58]  S. Zeki,et al.  The architecture of the colour centre in the human visual brain: new results and a review * , 2000, The European journal of neuroscience.

[59]  S. Zeki,et al.  Colour coding in rhesus monkey prestriate cortex. , 1973, Brain research.

[60]  Gereon R. Fink,et al.  When visual perception causes feeling: Enhanced cross-modal processing in grapheme-color synesthesia , 2005, NeuroImage.

[61]  Norihiro Sadato,et al.  The neural substrates of conscious color perception demonstrated using fMRI , 2004, NeuroImage.

[62]  P. Cavanagh,et al.  Retinotopy and color sensitivity in human visual cortical area V8 , 1998, Nature Neuroscience.

[63]  Lutz Jäncke,et al.  The multiple synaesthete E.S. — Neuroanatomical basis of interval-taste and tone-colour synaesthesia , 2008, NeuroImage.

[64]  V. Ramachandran,et al.  Psychophysical investigations into the neural basis of synaesthesia , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[65]  Jamie Ward,et al.  Grapheme-colour synaesthesia improves detection of embedded shapes, but without pre-attentive ‘pop-out’ of synaesthetic colour , 2010, Proceedings of the Royal Society B: Biological Sciences.

[66]  Karl J. Friston,et al.  Stochastic Designs in Event-Related fMRI , 1999, NeuroImage.

[67]  R. Blake,et al.  Early visual mechanisms do not contribute to synesthetic color experience , 2008, Vision Research.

[68]  Lutz Jäncke,et al.  The neuroanatomy of grapheme–color synesthesia , 2009, The European journal of neuroscience.

[69]  Jamie Ward,et al.  Non-random associations of graphemes to colours in synaesthetic and non-synaesthetic populations , 2005, Cognitive neuropsychology.

[70]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[71]  E. T. Bullmore,et al.  Functional magnetic resonance imaging of synesthesia: activation of V4/V8 by spoken words , 2002, Nature Neuroscience.

[72]  Guy B. Williams,et al.  The impact of skull-stripping and radio-frequency bias correction on grey-matter segmentation for voxel-based morphometry , 2008, NeuroImage.

[73]  Jamie Ward,et al.  Synaesthesia: The Prevalence of Atypical Cross-Modal Experiences , 2006, Perception.

[74]  Alex R. Wade,et al.  Visual field maps and stimulus selectivity in human ventral occipital cortex , 2005, Nature Neuroscience.

[75]  H. Scholte,et al.  Increased structural connectivity in grapheme-color synesthesia , 2007, Nature Neuroscience.

[76]  D. Heeger,et al.  Decoding and Reconstructing Color from Responses in Human Visual Cortex , 2009, The Journal of Neuroscience.

[77]  R. Blake,et al.  On the Perceptual Reality of Synesthetic Color , 2003 .

[78]  Beat Meier,et al.  Parieto-occipital suppression eliminates implicit bidirectionality in grapheme-colour synaesthesia , 2010, Neuropsychologia.

[79]  Daniel Smilek,et al.  Not all synaesthetes are created equal: Projector versus associator synaesthetes , 2004, Cognitive, affective & behavioral neuroscience.

[80]  R. Turner,et al.  Optimization of 3-D MP-RAGE Sequences for Structural Brain Imaging , 2000, NeuroImage.

[81]  H Koizumi,et al.  Functional mapping of the human colour centre with echo-planar magnetic resonance imaging , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[82]  Anina N. Rich,et al.  A systematic, large-scale study of synaesthesia: implications for the role of early experience in lexical-colour associations , 2005, Cognition.

[83]  D. Amaral,et al.  Macaque monkey retrosplenial cortex: III. Cortical efferents , 2003, The Journal of comparative neurology.

[84]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[85]  J. Ward,et al.  Synaesthesia, creativity and art: what is the link? , 2008, British journal of psychology.

[86]  Mariano Sigman,et al.  Hierarchical Coding of Letter Strings in the Ventral Stream: Dissecting the Inner Organization of the Visual Word-Form System , 2007, Neuron.

[87]  D. Eagleman,et al.  A standardized test battery for the study of synesthesia , 2007, Journal of Neuroscience Methods.

[88]  Lutz Jäncke,et al.  Globally Altered Structural Brain Network Topology in Grapheme-Color Synesthesia , 2011, The Journal of Neuroscience.

[89]  Bevil R. Conway,et al.  Neural basis for unique hues , 2008, Current Biology.

[90]  E. Maguire,et al.  What does the retrosplenial cortex do? , 2009, Nature Reviews Neuroscience.

[91]  Bevil R. Conway,et al.  Specialized Color Modules in Macaque Extrastriate Cortex , 2007, Neuron.

[92]  Edward M. Hubbard,et al.  Neurocognitive Mechanisms of Synesthesia , 2005, Neuron.

[93]  Simon Baron-Cohen,et al.  Synaesthesia : classic and contemporary readings , 1997 .

[94]  B. Wandell,et al.  Mapping Hv4 and Ventral Occipital Cortex: the Venous Eclipse , 2022 .

[95]  C. Brinkman,et al.  Do Synaesthetic Colours Act as Unique Features in Visual Search? , 2006, Cortex.

[96]  S-J Blakemore,et al.  Somatosensory activations during the observation of touch and a case of vision-touch synaesthesia. , 2005, Brain : a journal of neurology.

[97]  S. van der Stigchel,et al.  Is attention essential for inducing synesthetic colors? Evidence from oculomotor distractors. , 2009, Journal of vision.