A field-based finite element method for magnetostatics derived from an error minimization approach

[1]  R. Freund,et al.  Software for simplified Lanczos and QMR algorithms , 1995 .

[2]  Alberto Valli,et al.  Some remarks on the characterization of the space of tangential traces ofH(rot;Ω) and the construction of an extension operator , 1996 .

[3]  Lauri Kettunen,et al.  Gauging in Whitney spaces , 1999 .

[4]  A mixed face-edge finite element formulation for 3D magnetostatic problems , 1998 .

[5]  J. Rikabi,et al.  An error‐based approach to complementary formulations of static field solutions , 1988 .

[6]  A new method for cutting the magnetic scalar potential in multiply connected eddy current problems , 1989, International Magnetics Conference.

[7]  P. Vassilevski,et al.  Preconditioning indefinite systems arising from mixed finite element discretization of second-order elliptic problems , 1991 .

[8]  Alain Bossavit “Mixed” systems of algebraic equations in computational electromagnetism , 1998 .

[9]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[10]  N. Ida,et al.  Derivation of various dual formulations in magnetostatics via error based energy approach , 1999 .

[11]  Emmanuel Maitre,et al.  Transport equation with boundary conditions for free surface localization , 1999, Numerische Mathematik.

[12]  Ilaria Perugia,et al.  A mixed formulation for 3D magnetostatic problems: theoretical analysis and face-edge finite element approximation , 1999, Numerische Mathematik.

[13]  C. Trowbridge,et al.  The Analytical and Numerical Solution of Electric and Magnetic Fields , 1992 .

[14]  Gianni Gilardi,et al.  Magnetostatic and Electrostatic Problems in Inhomogeneous Anisotropic Media with Irregular Boundary and Mixed Boundary Conditions , 1997 .

[15]  Gene H. Golub,et al.  An Iteration for Indefinite Systems and Its Application to the Navier-Stokes Equations , 1998, SIAM J. Sci. Comput..

[16]  J. C. Ndlec lments finis mixtes incompressibles pour l'quation de Stokes dans ?3 , 1982 .

[17]  J. Remacle,et al.  Magnetostatic and magnetodynamic mixed formulations compared with conventional formulations , 1997 .

[18]  George M. Fix,et al.  HYBRID FINITE ELEMENT METHODS , 1976 .

[19]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[20]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[21]  I. Perugia,et al.  A Field-Based Mixed Formulation for the Two-Dimensional Magnetostatic Problem , 1997 .

[22]  L. Luksan,et al.  Indefinitely preconditioned inexact Newton method for large sparse equality constrained non‐linear programming problems , 1998 .

[23]  I. Duff,et al.  Direct Methods for Sparse Matrices , 1987 .

[24]  J. Simkin,et al.  On the use of the total scalar potential on the numerical solution of fields problems in electromagnetics , 1979 .

[25]  Ilaria Perugia,et al.  Linear Algebra Methods in a Mixed Approximation of Magnetostatic Problems , 1999, SIAM J. Sci. Comput..

[26]  A. Bossavit A rationale for 'edge-elements' in 3-D fields computations , 1988 .

[27]  D. Rodger,et al.  A formaulation for 3D moving conductor eddy current problems , 1989, International Magnetics Conference.