Effects of nonequilibrium and wall catalysis on Shuttle heat transfer

Nomenclature ALT = altitude C = atom mass fraction / = heat flux adjustment factor defined in Eq. (2) hD enthalpy of formation of species hT = total enthalpy k = Boltzmann constant kw = catalytic recombination rate L = length of vehicle m = mass of atom P = pressure Rn = nose radius q =heat flux S = surface distance T = temperature t =time from entry interface (Z= 122 km) V = velocity FINF = freestream velocity X axial distance from nose y = distance from body Z = geometric altitude a = angle of attack 7 = energy-transfer catalytic combination coefficient e = emittance p = density a = Stef an-Boltzmann constant

[1]  Terrence W. Simon,et al.  Heat transfer-a review of 1985 literature , 1986 .

[2]  John F. Wilson,et al.  Determination of atmospheric density using a space-launched projectile , 1985 .

[3]  E. V. Zoby,et al.  Temperature-dependent reaction-rate expression for oxygen recombination at Shuttle entry conditions , 1984 .

[4]  C. Lewis,et al.  Viscous shock-layer predictions of three-dimensional nonequilibrium flows past the space shuttle at high angle of attack , 1983 .

[5]  B. A. Miller,et al.  Orbiter windward surface entry Heating: Post-orbital flight test program update , 1983 .

[6]  C. Lewis,et al.  Three-dimensional nonequilibrium viscous shock-layer flow over the Space Shuttle Orbiter , 1983 .

[7]  P. M. Siemers,et al.  An evaluation of Space Shuttle Orbiter forward fuselage surface pressures - Comparison with wind tunnel and theoretical predictions , 1983 .

[8]  C. D. Scott Catalytic recombination of nitrogen and oxygen on iron-cobalt-chromia spinel , 1983 .

[9]  James N. Moss,et al.  Space Shuttle heating analysis with variation in angle of attack and surface condition , 1983 .

[10]  E. V. Zoby,et al.  Analysis of STS-2 experimental heating rates and transition data , 1982 .

[11]  C. D. Scott,et al.  Catalytic recombination and Space Shuttle heating , 1982 .

[12]  James N. Moss,et al.  Viscous-shock-layer heating analysis for the shuttle windward-symmetry plane with surface finite catalytic recombination rates , 1982 .

[13]  M. J. Lanfranco,et al.  Results of a flight experiment on the catalytic efficiency of the Space Shuttle heat shield , 1982 .

[14]  M. J. Lanfranco,et al.  Catalytic surface effects experiment on the Space Shuttle , 1981 .

[15]  C. D. Scott Space Shuttle laminar heating with finite-rate catalytic recombination , 1981 .

[16]  D. M. Curry,et al.  An analytical and experimental study for surface heat flux determination , 1977 .

[17]  M. J. Lanfranco,et al.  Numerical Computation of Space Shuttle Laminar Heating and Surface Streamlines , 1977 .

[18]  P. B. Chiu,et al.  Numerical Computations of Orbiter Flowfields and Laminar Heating Rates , 1977 .

[19]  J. Moss Reacting viscous-shock-layer solutions with multicomponent diffusion and mass injection , 1974 .

[20]  H. Tong,et al.  Nonequilibrium chemistry boundary layer integral matrix procedure , 1973 .

[21]  E. P. Bartlett,et al.  An analysis of the coupled chemically reacting boundary layer and charring ablator. Part 3 - Nonsimilar solution of the multicomponent laminar boundary layer by an integral matrix method , 1968 .

[22]  F. G. Blottner,et al.  Nonequilibrium laminar boundary-layer flow of ionized air , 1964 .