Invariantization of the Crank Nicolson method for Burgers’ equation

Abstract In this article, a geometric technique to construct numerical schemes for partial differential equations (PDEs) that inherit Lie symmetries is proposed. The moving frame method enables one to adjust the numerical schemes in a geometric manner and systematically construct proper invariant versions of them. To illustrate the method, we study invariantization of the Crank–Nicolson scheme for Burgers’ equation. With careful choice of normalization equations, the invariantized schemes are shown to surpass the standard scheme, successfully removing numerical oscillation around sharp transition layers.

[1]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[2]  Discretizations preserving all Lie point symmetries of the Korteweg-de Vries equation , 2005, math-ph/0507033.

[3]  M. Baruch,et al.  Hamilton's principle, Hamilton's law - 6 to the n power correct formulations , 1982 .

[4]  Roman Kozlov,et al.  Lie group classification of second-order ordinary difference equations , 2000 .

[5]  J. Moser,et al.  Discrete versions of some classical integrable systems and factorization of matrix polynomials , 1991 .

[6]  Mireille Boutin,et al.  Numerically Invariant Signature Curves , 1999, International Journal of Computer Vision.

[7]  Jacques Laskar,et al.  A long-term numerical solution for the insolation quantities of the Earth , 2004 .

[8]  Luc Vinet,et al.  Lie group formalism for difference equations , 1997 .

[9]  Peter J. Olver,et al.  Geometric Integration Algorithms on Homogeneous Manifolds , 2002, Found. Comput. Math..

[10]  C. Tsallis,et al.  Breakdown of Exponential Sensitivity to Initial Conditions: Role of the Range of Interactions , 1998 .

[11]  A. Iserles,et al.  Lie-group methods , 2000, Acta Numerica.

[12]  Mark J. Ablowitz,et al.  On the Numerical Solution of the Sine-Gordon Equation , 1996 .

[13]  C. Scovel,et al.  Symplectic integration of Hamiltonian systems , 1990 .

[14]  Peter J. Olver,et al.  Geometric Foundations of Numerical Algorithms and Symmetry , 2001, Applicable Algebra in Engineering, Communication and Computing.

[15]  P. E. Hydon,et al.  Symmetries and first integrals of ordinary difference equations , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[16]  J. C. Simo,et al.  Conserving algorithms for the dynamics of Hamiltonian systems on lie groups , 1994 .

[17]  J. Marsden,et al.  Multisymplectic Geometry, Variational Integrators, and Nonlinear PDEs , 1998, math/9807080.

[18]  B. Leimkuhler,et al.  Geometric integrators for multiple time-scale simulation , 2006 .

[19]  K. Feng Difference schemes for Hamiltonian formalism and symplectic geometry , 1986 .

[20]  G. Quispel,et al.  Geometric integrators for ODEs , 2006 .

[21]  Martin Welk,et al.  Numerical Invariantization for Morphological PDE Schemes , 2007, SSVM.

[22]  J. C. Simo,et al.  Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics , 1992 .

[23]  Pilwon Kim,et al.  Invariantization of numerical schemes using moving frames , 2007 .

[24]  D. Manolopoulos,et al.  A new semiclassical initial value method for Franck-Condon spectra , 1996 .

[25]  Mark J. Ablowitz,et al.  Regular ArticleOn the Numerical Solution of the Sine–Gordon Equation: I. Integrable Discretizations and Homoclinic Manifolds , 1996 .

[26]  C. D. Bailey Application of Hamilton's law of varying action , 1975 .

[27]  Donald Greenspan,et al.  Energy and momentum conserving methods of arbitrary order for the numerical integration of equations of motion , 1975 .

[28]  V. A. Dorodnitsyn Finite Difference Models Entirely Inheriting Continuous Symmetry Of Original Differential Equations , 1994 .

[29]  J. C. Simo,et al.  The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics , 1992 .

[30]  V. Dorodnitsyn,et al.  Symmetry-preserving difference schemes for some heat transfer equations , 1997, math/0402367.

[31]  Chris Budd,et al.  Symmetry-adapted moving mesh schemes for the nonlinear Schrödinger equation , 2001 .

[32]  P. J. Olver,et al.  Foundations of Computational Mathematics: Moving frames — in geometry, algebra, computer vision, and numerical analysis , 2001 .

[33]  B. Leimkuhler,et al.  Simulating Hamiltonian Dynamics , 2005 .

[34]  G. R. W. Quispel,et al.  Numerical Integrators that Preserve Symmetries and Reversing Symmetries , 1998 .

[35]  P. Olver,et al.  Moving Coframes: II. Regularization and Theoretical Foundations , 1999 .

[36]  Pierre-Louis Bazin,et al.  Structure from Motion: Theoretical Foundations of a Novel Approach Using Custom Built Invariants , 2002, ArXiv.

[37]  Andrzej Marciniak,et al.  Energy conserving, arbitrary order numerical solutions of theN-body problem , 1984 .

[38]  A Generalized W-Transformation for Constructing Symplectic Partitioned Runge-Kutta Methods , 2003 .