Thermoeconomic optimization and parametric study of an irreversible Stirling heat pump cycle

The thermo-economic optimization of an irreversible Stirling heat pump cycle with a detail parametric study for the finite heat capacity of external reservoirs is presented in this article. The external irreversibility is due to finite temperature difference between the working fluid and the external reservoirs while the internal irreversibility is due to the regenerative heat loss. The Thermo-economic function is defined as the heating load divided by the total cost of the system along with the running cost. The Thermo-economic function is optimized with respect to the working fluid temperatures and the values for various parameters at the optimal operating condition are calculated. The effects of different operating parameters on the performance of the cycle have been studied. It is found that the effect of regenerative effectiveness and the economic parameter are more pronounced than that of the other parameters.

[1]  Chih Wu,et al.  Specific heating load of an endoreversible Carnot heat Pump , 1993 .

[2]  Chih Wu,et al.  Power optimization of a finite-time Carnot heat engine , 1988 .

[3]  Bahri Sahin,et al.  Finite time thermoeconomic optimization for endoreversible refrigerators and heat pumps , 1999 .

[4]  Chih Wu,et al.  Power optimization of an extra-terrestrial, solar-radiant stirling heat engine , 1995 .

[5]  Fengrui Sun,et al.  Performance analysis for endoreversible closed regenerated Brayton heat pump cycles , 1999 .

[6]  Santanu Bandyopadhyay,et al.  Thermoeconomic optimization of combined cycle power plants , 2001 .

[7]  S. C. Kaushik,et al.  Ecological optimization and performance study of irreversible Stirling and Ericsson heat engines , 2002 .

[8]  Bahri Sahin,et al.  Performance analysis of a two-stage irreversible heat pump under maximum heating load per unit total cost conditions , 2002 .

[9]  Cha'o-Kuang Chen,et al.  The ecological optimization of an irreversible Carnot heat engine , 1997 .

[10]  Chih Wu,et al.  Power limit of an endoreversible Ericsson cycle with regeneration , 1996 .

[11]  Guoxing Lin,et al.  Ecological optimization criterion for an irreversible three-heat-source refrigerator , 2000 .

[12]  Bahri Sahin,et al.  Thermoeconomic optimization for irreversible absorption refrigerators and heat pumps , 2003 .

[13]  C. H. Blanchard,et al.  Coefficient of performance for finite speed heat pump , 1980 .

[14]  Bahri Sahin,et al.  Effects of internal irreversibility and heat leakage on the finite time thermoeconomic performance of refrigerators and heat pumps , 2000 .

[15]  Zijun Yan,et al.  Comment on ‘‘An ecological optimization criterion for finite‐time heat engines’’ [J. Appl. Phys. 69, 7465 (1991)] , 1993 .

[16]  Cha'o-Kuang Chen,et al.  Ecological optimization of an endoreversible Brayton cycle , 1998 .

[17]  Fernando Angulo-Brown,et al.  An ecological optimization criterion for finite‐time heat engines , 1991 .

[18]  S. C. Kaushik,et al.  Performance evaluation of irreversible stirling and ericsson heat pump cycles , 2002 .

[19]  Chih Wu,et al.  Ecological optimisation of an irreversible Stirling heat engine , 2001 .

[20]  Harvey S. Leff,et al.  EER, COP, and the second law efficiency for air conditioners , 1978 .

[21]  Jincan Chen Minimum power input of irreversible Stirling refrigerator for given cooling rate , 1998 .

[22]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[23]  Mohamed A. Antar,et al.  Thermoeconomic considerations in the optimum allocation of heat exchanger inventory for a power plant , 2001 .

[24]  S. C. Kaushik,et al.  Ecological optimization and parametric study of irreversible Stirling and Ericsson heat pumps , 2002 .

[25]  F. Curzon,et al.  Efficiency of a Carnot engine at maximum power output , 1975 .

[26]  M. M. Salah El-Din Optimal utilization of waste heat from heat engines by use of a heat pump , 1999 .

[27]  E. Torres-Reyes,et al.  Optimal performance of an irreversible solar-assisted heat pump , 2001 .