Artificial bee swarm optimization algorithm for parameters identification of solar cell models

An accurate mathematical model is an extremely helpful tool for simulation, evaluation, control, and optimization of solar cell systems. Due to the non-linearity of the solar cell models and the inability of traditional optimization methods to accurately identify the unknown parameters, recently, metaheuristic algorithms have attracted significant attention. Artificial bee swarm optimization (ABSO) is a recently invented algorithm inspired by the intelligent behaviors of honey bees such as collection and processing of nectar. In this paper, we propose an ABSO-based parameter identification technique based on the single and double diode models for a 57mm diameter commercial (R.T.C. France) silicon solar cell. The results obtained by ABSO algorithm are quite promising and outperform those found by the other studied methods.

[1]  M. F. AlHajri,et al.  Optimal extraction of solar cell parameters using pattern search , 2012 .

[2]  T. Easwarakhanthan,et al.  Nonlinear Minimization Algorithm for Determining the Solar Cell Parameters with Microcomputers , 1986 .

[3]  J. Phillips,et al.  A comparative study of extraction methods for solar cell model parameters , 1986 .

[4]  A. Kapoor,et al.  Exact analytical solutions of the parameters of real solar cells using Lambert W-function , 2004 .

[5]  M. Wolf,et al.  Investigation of the double exponential in the current—Voltage characteristics of silicon solar cells , 1977, IEEE Transactions on Electron Devices.

[6]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[7]  Diego H. Milone,et al.  Photovoltaic generation model as a function of weather variables using artificial intelligence techniques , 2012 .

[8]  Shankar Chakraborty,et al.  Parametric optimization of some non-traditional machining processes using artificial bee colony algorithm , 2011, Eng. Appl. Artif. Intell..

[9]  S. Karmalkar,et al.  An Analytical Method to Extract the Physical Parameters of a Solar Cell From Four Points on the Illuminated $J{-}V$ Curve , 2009, IEEE Electron Device Letters.

[10]  Orhan Ekren,et al.  Size optimization of a PV/wind hybrid energy conversion system with battery storage using simulated annealing , 2010 .

[11]  Marcello Artioli,et al.  Numerical method for the extraction of photovoltaic module double-diode model parameters through cluster analysis , 2010 .

[12]  Huang Wei,et al.  Extracting solar cell model parameters based on chaos particle swarm algorithm , 2011, 2011 International Conference on Electric Information and Control Engineering.

[13]  A. K. Al-Othman,et al.  Simulated Annealing algorithm for photovoltaic parameters identification , 2012 .

[14]  Xin-She Yang,et al.  Engineering Optimizations via Nature-Inspired Virtual Bee Algorithms , 2005, IWINAC.

[15]  Benjamin Y. H. Liu,et al.  The interrelationship and characteristic distribution of direct, diffuse and total solar radiation , 1960 .

[16]  Alireza Askarzadeh,et al.  Comparison of particle swarm optimization and other metaheuristics on electricity demand estimation: A case study of Iran , 2014 .

[17]  Chaohua Dai,et al.  Seeker Optimization Algorithm for Digital IIR Filter Design , 2010, IEEE Transactions on Industrial Electronics.

[18]  Alessandra Di Gangi,et al.  A procedure to calculate the five-parameter model of crystalline silicon photovoltaic modules on the basis of the tabular performance data , 2013 .

[19]  Alireza Rezazadeh,et al.  A new artificial bee swarm algorithm for optimization of proton exchange membrane fuel cell model parameters , 2011, Journal of Zhejiang University SCIENCE C.

[20]  Giacomo Capizzi,et al.  A radial basis function neural network based approach for the electrical characteristics estimation of a photovoltaic module , 2012, ArXiv.

[21]  Alireza Rezazadeh,et al.  A grouping-based global harmony search algorithm for modeling of proton exchange membrane fuel cell , 2011 .

[22]  Alireza Rezazadeh,et al.  An Innovative Global Harmony Search Algorithm for Parameter Identification of a PEM Fuel Cell Model , 2012, IEEE Transactions on Industrial Electronics.

[23]  Francisco Jurado,et al.  Optimal placement and sizing from standpoint of the investor of Photovoltaics Grid-Connected Systems using Binary Particle Swarm Optimization , 2010 .

[24]  Reza Akbari,et al.  A novel bee swarm optimization algorithm for numerical function optimization , 2010 .

[25]  Abderrezak Guessoum,et al.  A simple behavioural model for solar module electric characteristics based on the first order system step response for MPPT study and comparison , 2012 .

[26]  Saad Mekhilef,et al.  Parameter extraction of solar photovoltaic modules using penalty-based differential evolution , 2012 .

[27]  Min-Yuan Cheng,et al.  A hybrid swarm intelligence based particle-bee algorithm for construction site layout optimization , 2012, Expert Syst. Appl..

[28]  Weidong Xiao,et al.  Real-Time Identification of Optimal Operating Points in Photovoltaic Power Systems , 2006, IEEE Transactions on Industrial Electronics.

[29]  M. F. AlHajri,et al.  A new estimation approach for determining the I–V characteristics of solar cells , 2011 .

[30]  Taher Niknam,et al.  A modified honey bee mating optimization algorithm for multiobjective placement of renewable energy resources , 2011 .