A 21-Year Study of Seasonal and Interspecific Variation of Hatchling Emergence in a Nearctic Freshwater Turtle Community: To Overwinter or Not To Overwinter?

Abstract: Hatchling emergence patterns were studied in a community of six species of freshwater turtles in Lancaster County, Pennsylvania, USA, including: Chelydra serpentina, Chrysemys picta, Clemmys guttata, Glyptemys insculpta, Glyptemys muhlenbergii, and Sternotherus odoratus. Data were collected every year from 1965–1985 on estimated date of emergence, carapace length, April–May precipitation, August–September precipitation, annual precipitation, and low temperature and occurrence of precipitation during the 24 h prior to the time of each hatchling detection (n  =  806). Chelydra serpentina, Ch. picta, and Cl. guttata hatchlings have a facultative delayed emergence strategy. The other species (G. insculpta, G. muhlenbergii, and S. odoratus) appear to be obligate early emergers, with the exception of one hatchling G. muhlenbergii that delayed emergence. Early emergence occurred in some species every year. However, the majority of hatchlings delayed emergence until the year following oviposition, except in 1973, the year following intense flooding and nest destruction associated with a major hurricane. Mean estimated calendar day of emergence varied annually in C. serpentina and Ch. picta. The same variable also differed among species for comparisons of both early and delayed emergence. Chelydra serpentina hatchlings emerged earlier than all other species whether they used an early or delayed strategy. Carapace length of Ch. picta hatchlings varied significantly among years, and C. serpentina hatchlings that delayed emergence were significantly larger in carapace length than those that emerged early. Seasonal and previous 24-h precipitation had varying effects on the number of emerging hatchlings, but August–September precipitation in one year had a strong correlation with the number of hatchlings that delayed emergence until the following spring. The number of hatchlings detected peaked at a previous 24-h air temperature of about 12°C for both early and late emergence. Small species like G. muhlenbergii and S. odoratus may emerge early to limit potential hatchling competition in diverse communities of freshwater turtles with primarily delayed emergence. Résumé: Le motif d'émergence d'une communauté de 6 espèces de tortue d'eau douce a été étudié, dont Chelydra serpentina, Chrysemys picta, Clemmys guttata, Glyptemys insculpta, Glyptemys muhlenbergii, et Sternotherus odoratus, dans le comté de Lancaster, en Pennsylvanie, É.-U. Les données telles que l'estimé de date d'éclosion, la longueur de la carapace, les précipitation aux mois d'avril et mai et ensuite août et septembre, les précipitations annuelles, et la présence de basses températures et de pluie pendant les 24 h avant la détection d'éclosion de tortues (n  =  806) ont été mesurées annuellement de 1965–1985. Les jeunes tortues des espèces C. serpentina, Ch. picta, and Cl. guttata semblent pratiquer une stratégie d'émergence tardive facultative, leur permettant d'émerger plus tard dans la saison si nécessaire. Les autres espèces (G. insculpta, G. muhlenbergii, et S. odoratus) semblent plutôt contraintes à émerger tôt dans la saison, sauf dans le cas d'une tortue G. muhlenbergii qui a été observé en émergence tardive. Au moins une espèce de tortue a été observée à émerger hâtivement à chaque année, à l'exception de 1973, année précédée d'un sévère ouragan causant l'inondation et la destruction de plusieurs nids. Par contre, la majorité des jeunes tortues ont repoussé leur émergence à l'année suivant l'oviposition. Le jour hebdomadaire moyen d'émergence a varié annuellement pour C. serpentina et Ch. picta. La même variable varie entre espèces lors de comparaisons entre l'émergence hâtive et tardive. Les jeunes C. serpentina émergeaient plus tôt que toutes les autres espèces dans notre étude, peu importe leur stratégie d'émergence. La longueur de la carapace des jeunes Ch. picta a fait preuve de beaucoup de variations à travers les ans, tandis que les jeunes C. serpentina qui ont émergé tardivement avaient une longueur de carapace significativement plus grande que ceux qui ont émergé plus tôt. Les précipitations annuelles et celles reçues dans les 24-h précédant l'émergence avaient des effets variables en termes de nombre de tortues émergentes, mais nos observations semblent indiqués une forte relation entre les précipitations d'août et septembre au nombre de jeunes tortues restants dans le nid jusqu'au printemps suivant. Le nombre maximal de tortues en émergence a été observé quand la température de l'air était de 12°C pendant les 24-h précédentes, observation pour les tortues pratiquant une émergence hâtive ou tardive. Finalement, les espèces de petite taille, comme G. muhlenbergii et S. odoratus, peuvent parfois employer la stratégie d'émergence hâtive afin d'alléger la compétition entre elles et les autres espèces de tortue d'eau douces qui pratiquent principalement la stratégie d'émergence tardive.

[1]  G. Tattersall,et al.  Potential sources of intra-population variation in the overwintering strategy of painted turtle (Chrysemys picta) hatchlings , 2014, Journal of Experimental Biology.

[2]  C. H. Ernst,et al.  Relationship of environmental temperatures and activity of Chelydra serpentina in Southeastern Pennsylvania, USA , 2014 .

[3]  J. Gibbons A Long-Term Perspective of Delayed Emergence (aka Overwintering) in Hatchling Turtles: Some They Do and Some They Don't, and Some You Just Can't Tell , 2013 .

[4]  J. Lovich,et al.  Climatic variation affects clutch phenology in Agassiz's desert tortoise Gopherus agassizii , 2012 .

[5]  Terence R. Arundel,et al.  Nesting Ecology of a Population of Gopherus agassizii at a Utility-Scale Wind Energy Facility in Southern California , 2012, Copeia.

[6]  K. Muldoon,et al.  Movements, overwintering, and mortality of hatchling Diamond-backed Terrapins (Malaclemys terrapin) at Jamaica Bay, New York , 2012 .

[7]  J. Lovich,et al.  Optimal egg size in a suboptimal environment: reproductive ecology of female Sonora mud turtles (Kinosternon sonoriense) in central Arizona, USA , 2012 .

[8]  J. Lovich,et al.  Female Agassiz’s desert tortoise activity at a wind energy facility in southern California: The influence of an El Niño event , 2012 .

[9]  R. Burke,et al.  Eastern Box Turtle, Terrapene carolina, Neonate Overwintering Ecology on Long Island, New York , 2011 .

[10]  J. Congdon,et al.  Conservation Implications of Initial Orientation of Naïve Hatchling Snapping Turtles (Chelydra serpentina) and Painted Turtles (Chrysemys picta belli) Dispersing From Experimental Nests , 2011 .

[11]  P. Baker,et al.  Winter severity and phenology of spring emergence from the nest in freshwater turtles , 2010, Naturwissenschaften.

[12]  C. H. Ernst,et al.  Nesting ecology of the Eastern box turtle (Terrapene carolina carolina) in central Virginia, USA , 2008 .

[13]  C. H. Ernst,et al.  Reproductive Ecology of the Terrapene carolina carolina (Eastern Box Turtle) in Central Virginia , 2005 .

[14]  A. Pyle,et al.  Overwintering in the nest by hatchling map turtles (Graptemys geographica) , 2004 .

[15]  M. A. Rice,et al.  Terrestrial Overwintering of Hatchling Turtles in Vermont Nests , 2004 .

[16]  G. C. Packard,et al.  Accumulation of Lactate by Frozen Painted Turtles (Chrysemys picta) and Its Relationship to Freeze Tolerance , 2004, Physiological and Biochemical Zoology.

[17]  G. C. Packard,et al.  The Adaptive Strategy for Overwintering by Hatchling Snapping Turtles (Chelydra serpentina) , 2001 .

[18]  J. Tucker,et al.  Experimental analysis of an early life‐history stage: avian predation selects for larger body size of hatchling turtles , 2000 .

[19]  F. Janzen,et al.  EXPERIMENTAL ANALYSIS OF AN EARLY LIFE-HISTORY STAGE: SELECTION ON SIZE OF HATCHLING TURTLES , 2000 .

[20]  N. Nicholls,et al.  ENSO Regulation of Indo-Pacific Green Turtle Populations , 2000 .

[21]  G. C. Packard,et al.  WHY HATCHLING BLANDING'S TURTLES DON'T OVERWINTER INSIDE THEIR NEST , 2000 .

[22]  A. Dunham,et al.  The relationship of body size to survivorship of hatchling snapping turtles (Chelydra serpentina): an evaluation of the “bigger is better” hypothesis , 1999, Oecologia.

[23]  F. Janzen,et al.  Effects of Hydric Conditions During Incubation on Overwintering Hatchlings of the Red-eared Slider Turtle (Trachemys scripta elegans) , 1999 .

[24]  J. Lovich,et al.  Studies of reproductive output of the desert tortoise at Joshua Tree National Park, the Mojave National Preserve, and comparative sites , 1999 .

[25]  J. Lovich,et al.  Turtles of the United States and Canada , 1995 .

[26]  M. F. Wright,et al.  Cold hardiness and overwintering strategies of hatchlings in an assemblage of northern turtles. , 1995 .

[27]  D. R. Jackson Overwintering of hatchling turtles in Northern Florida , 1994 .

[28]  F. Janzen An Experimental Analysis of Natural Selection on Body Size of Hatchling Turtles , 1993 .

[29]  A. Georges,et al.  Early Developmental Arrest During Immersion of Eggs of a Tropical Fresh-Water Turtle, Chelodina-Rugosa (Testudinata, Chelidae), From Northern Australia , 1993 .

[30]  M. Ewert Egg incubation: Cold torpor, diapause, delayed hatching and aestivation in reptiles and birds , 1991 .

[31]  J. Congdon,et al.  REPRODUCTION AND NESTING ECOLOGY OF SNAPPING TURTLES (CHELYDRA SERPENTINA) , 1987 .

[32]  C. H. Ernst Environmental Temperatures and Activities in the Wood Turtle, Clemmys insculpta , 1986 .

[33]  D. R. Long Lipid Content and Delayed Emergence of Hatchling Yellow Mud Turtles , 1986 .

[34]  G. C. Packard,et al.  Daily and seasonal variation in hydric conditions and temperature inside nests of common snapping turtles (Chelydra serpentina) , 1985 .

[35]  G. C. Packard,et al.  Effects of substrate water potential and fluctuating temperatures on sex ratios of hatchling painted turtles (Chrysemys picta) , 1984 .

[36]  G. L. Paukstis,et al.  Influence of Hydric Environment on Oxygen Consumption by Embryonic Turtles Chelydra serpentina and Trionyx spiniferus , 1984, Physiological Zoology.

[37]  J. Congdon,et al.  WINTER TEMPERATURES OF CHRYSEMYS PICTA NESTS IN MICHIGAN: EFFECTS ON HATCHLING SURVIVAL , 1984 .

[38]  G. C. Packard,et al.  Influence of Hydration of the Environment on the Pattern of Nitrogen Excretion by Embryonic Snapping Turtles (Chelydra Serpentina) , 1984 .

[39]  G. C. Packard,et al.  Coupling of physiology of embryonic turtles to the hydric environment , 1984 .

[40]  J. Congdon,et al.  NESTING ECOLOGY AND HATCHING SUCCESS IN THE TURTLE EMYDOIDEA BLANDINGI , 1983 .

[41]  R. D. Semlitsch,et al.  TERRESTRIAL DRIFT FENCES WITH PITFALL TRAPS AN EFFECTIVE TECHNIQUE FOR QUANTITATIVE SAMPLING OF ANIMAL POPULATIONS , 1982 .

[42]  J. Congdon,et al.  Nesting frequency and success: implications for the demography of painted turtles , 1981 .

[43]  G. C. Packard,et al.  Possible adaptive value of water exchanges in flexible-shelled eggs of turtles. , 1981, Science.

[44]  J. Gibbons,et al.  THE EVOLUTIONARY SIGNIFICANCE OF DELAYED EMERGENCE FROM THE NEST BY HATCHLING TURTLES , 1978, Evolution; international journal of organic evolution.

[45]  C. H. Ernst Ecology of the Spotted Turtle, Clemmys guttata (Reptilia, Testudines, Testudinidae), in Southeastern Pennsylvania , 1976 .

[46]  Laurence E. Bayless Population Parameters for Chrysemys picta in a New York Pond , 1975 .

[47]  C. H. Ernst Effects of Hurricane Agnes on a Painted Turtle Population , 1974 .

[48]  C. H. Ernst Population Dynamics and Activity Cycles of Chrysemys picta in Southeastern Pennsylvania , 1971 .

[49]  O. Sexton Notes concerning Turtle Hatchlings , 1957 .

[50]  Norman Hartweg Spring Emergence of Painted Turtle Hatchlings , 1944 .

[51]  G. Toner Delayed Hatching in the Snapping Turtle , 1940 .

[52]  W. Hamilton Observations on the Reproductive Behavior of the Snapping Turtle , 1940 .

[53]  R. Conant The Reptiles of Ohio , 1938 .

[54]  J. Nichols Further Notes on Painted Turtles , 1933 .