Peacock patterns and new integer invariants in topological string theory

Topological string theory near the conifold point of a Calabi–Yau threefold gives rise to factorially divergent power series which encode the all-genus enumerative information. These series lead to infinite towers of singularities in their Borel plane (also known as “peacock patterns”), and we conjecture that the corresponding Stokes constants are integer invariants of the Calabi–Yau threefold. We calculate these Stokes constants in some toric examples, confirming our conjecture and providing in some cases explicit generating functions for the new integer invariants, in the form of q-series. Our calculations in the toric case rely on the TS/ST correspondence, which promotes the asymptotic series near the conifold point to spectral traces of operators, and makes it easier to identify the Stokes data. The resulting mathematical structure turns out to be very similar to the one of complex Chern–Simons theory. In particular, spectral traces correspond to state integral invariants and factorize in holomorphic/anti-holomorphic blocks. ar X iv :2 10 4. 07 43 7v 3 [ he pth ] 1 0 D ec 2 02 1

[1]  T. Dimofte,et al.  Complex Chern–Simons Theory at Level k via the 3d–3d Correspondence , 2014, 1409.0857.

[2]  C. Vafa,et al.  Fivebranes and 3-manifold homology , 2016, 1602.05302.

[3]  E. Witten Analytic Continuation Of Chern-Simons Theory , 2010, 1001.2933.

[4]  M. Aganagic,et al.  Topological Strings and (Almost) Modular Forms , 2006, hep-th/0607100.

[5]  E. Pomoni,et al.  From Quantum Curves to Topological String Partition Functions , 2018, Communications in Mathematical Physics.

[6]  M. Mariño,et al.  The complex side of the TS/ST correspondence , 2017, Journal of Physics A: Mathematical and Theoretical.

[7]  M. Mariño,et al.  Matrix Models from Operators and Topological Strings , 2015, 1502.02958.

[8]  Pietro Longhi,et al.  Exploring 5d BPS Spectra with Exponential Networks , 2018, Annales Henri Poincaré.

[9]  L. Faddeev Discrete Heisenberg-Weyl Group and modular group , 1995 .

[10]  J. Edelstein,et al.  Resurgent Transseries and the Holomorphic Anomaly: Nonperturbative Closed Strings in Local CP2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{- , 2015, Communications in Mathematical Physics.

[11]  S. Franco,et al.  Exact quantization conditions for cluster integrable systems , 2015, 1512.03061.

[12]  H. R. Pitt Divergent Series , 1951, Nature.

[13]  M. J,et al.  MODULAR FORMS AND QUANTUM INVARIANTS OF 3-MANIFOLDS* , 1999 .

[14]  G. Bonelli,et al.  BPS Quivers of Five-Dimensional SCFTs, Topological Strings and q-Painlevé Equations , 2020, Annales Henri Poincaré.

[15]  D. Gaiotto,et al.  Gauge Theories Labelled by Three-Manifolds , 2011, 1108.4389.

[16]  O. Costin,et al.  Resurgent extrapolation: rebuilding a function from asymptotic data. Painlevé I , 2019, Journal of Physics A: Mathematical and Theoretical.

[17]  David Naccache,et al.  Gröbner Basis , 2011, Encyclopedia of Cryptography and Security.

[18]  M. Mariño,et al.  Exact quantization conditions for the relativistic Toda lattice , 2015, 1511.02860.

[19]  Stavros Garoufalidis,et al.  Resurgence of Chern-Simons theory at the trivial flat connection , 2021, 2111.04763.

[20]  M. Kontsevich,et al.  Analyticity and resurgence in wall-crossing formulas , 2020, Letters in Mathematical Physics.

[21]  On the Quantum Invariants for the Spherical Seifert Manifolds , 2005, math-ph/0504082.

[22]  G. Moore,et al.  Four-Dimensional Wall-Crossing via Three-Dimensional Field Theory , 2008, 0807.4723.

[23]  Quantum Dilogarithm , 1993, hep-th/9310070.

[24]  Sanefumi Moriyama,et al.  Instanton effects in ABJM theory from Fermi gas approach , 2012, 1211.1251.

[25]  E. Witten Supersymmetry and Morse theory , 1982 .

[26]  Min-xin Huang,et al.  Refined stable pair invariants for E-, M- and [p, q]-strings , 2013, 1308.0619.

[28]  T. Bridgeland The author is very grateful to Kohei Iwaki , 2017 .

[29]  Nikita A. Nekrasov Seiberg-Witten prepotential from instanton counting , 2002 .

[30]  Inês Aniceto,et al.  A primer on resurgent transseries and their asymptotics , 2018, Physics Reports.

[31]  R. Kashaev,et al.  A TQFT from Quantum Teichmüller Theory , 2014 .

[32]  M. Mariño,et al.  Instanton Effects and Quantum Spectral Curves , 2013, 1308.6485.

[33]  M. Mariño Instantons and Large N: An Introduction to Non-Perturbative Methods in Quantum Field Theory , 2015 .

[34]  J. Walcher,et al.  Exponential networks and representations of quivers , 2016, 1611.06177.

[35]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[36]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[37]  P. Alam ‘G’ , 2021, Composites Engineering: An A–Z Guide.

[38]  Ricardo Schiappa,et al.  Borel and Stokes Nonperturbative Phenomena in Topological String Theory and c = 1 Matrix Models , 2009, 0907.4082.

[39]  M. Mariño Instantons and Large N , 2015 .

[40]  R. Kashaev,et al.  From state integrals to q-series , 2013, 1304.2705.

[41]  G. Moore,et al.  Wall-crossing, Hitchin Systems, and the WKB Approximation , 2009, 0907.3987.

[42]  R. Gopakumar,et al.  On the Gauge Theory/Geometry Correspondence , 1998, hep-th/9811131.

[43]  Sanefumi Moriyama,et al.  Non-perturbative effects and the refined topological string , 2013, 1306.1734.

[44]  G. Bonelli,et al.  Quantum curves and q-deformed Painlevé equations , 2017, Letters in Mathematical Physics.

[45]  Pietro Longhi On the BPS spectrum of 5d SU(2) super-Yang-Mills , 2021 .

[46]  Santiago Codesido,et al.  Spectral Theory and Mirror Curves of Higher Genus , 2015, 1507.02096.

[47]  Kaiwen Sun,et al.  Exact quantization conditions, toric Calabi-Yau and non-perturbative topological string , 2016, 1606.07330.

[48]  A. Mironov,et al.  Nekrasov functions and exact Bohr-Sommerfeld integrals , 2009, 0910.5670.

[49]  Murad Alim Intrinsic non-perturbative topological strings , 2021 .

[50]  Jie Gu,et al.  The Resurgent Structure of Quantum Knot Invariants , 2020, Communications in Mathematical Physics.

[51]  Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes , 1993, hep-th/9309140.

[52]  Yan Soibelman,et al.  Stability structures, motivic Donaldson-Thomas invariants and cluster transformations , 2008, 0811.2435.

[53]  J. Andersen,et al.  Decomposition of Witten-Reshetikhin-Turaev invariant: Linking pairing and modular forms , 2011 .

[54]  Don Zagier,et al.  Knots, perturbative series and quantum modularity , 2021, 2111.06645.

[55]  Marcos Marino,et al.  Lectures on non‐perturbative effects in large N gauge theories, matrix models and strings , 2012, 1206.6272.

[56]  R. Kashaev The Hyperbolic Volume of Knots from the Quantum Dilogarithm , 1996, q-alg/9601025.

[57]  Generalized volume conjecture and the A-polynomials: The Neumann–Zagier potential function as a classical limit of the partition function , 2006, math/0604094.

[58]  Min-xin Huang,et al.  Topological strings and quantum spectral problems , 2014, 1406.6178.

[59]  Sergei Gukov,et al.  3-Manifolds and 3d Indices , 2011, 1112.5179.

[60]  Xin Wang,et al.  New Exact Quantization Condition for Toric Calabi-Yau Geometries. , 2015, Physical review letters.

[61]  Nobuki Takayama,et al.  Gröbner basis, integration and transcendental functions , 1990, ISSAC '90.

[62]  R. Kashaev,et al.  Spectral Equations for the Modular Oscillator , 2017, Reviews in Mathematical Physics.

[63]  C. Vafa,et al.  On classification ofN=2 supersymmetric theories , 1993 .

[64]  A. Kashani-Poor Quantization condition from exact WKB for difference equations , 2016, 1604.01690.

[65]  M. Yamazaki,et al.  SL(2, R) Chern-Simons, Liouville, and Gauge Theory on Duality Walls , 2011 .

[66]  A. Boutet de Monvel,et al.  Seiberg–Witten theory as a Fermi gas , 2016, Letters in Mathematical Physics.

[67]  James D. Lewis,et al.  Specialization of cycles and the $K$-theory elevator , 2017, Communications in Number Theory and Physics.

[68]  D. Zagier,et al.  Exact results for perturbative Chern-Simons theory with complex gauge group. , 2009, 0903.2472.

[69]  M. Loday-Richaud Divergent Series, Summability and Resurgence II: Simple and Multiple Summability , 2017 .

[70]  M. Mariño,et al.  Resurgence matches quantization , 2016, 1610.06782.

[71]  Three-Dimensional Quantum Gravity , 2008 .

[72]  Peacock patterns and resurgence in complex Chern-Simons theory , 2020, 2012.00062.

[73]  R. Kashaev,et al.  Operators from Mirror Curves and the Quantum Dilogarithm , 2015, 1501.01014.

[74]  M. Mariño Spectral theory and mirror symmetry , 2015, Proceedings of Symposia in Pure Mathematics.

[75]  Jie Gu,et al.  Operators and higher genus mirror curves , 2016, 1609.00708.

[76]  Babak Haghighat,et al.  Integrability of the holomorphic anomaly equations , 2008, 0809.1674.

[77]  Holomorphic anomalies in topological field theories , 1993 .

[78]  M. Mariño,et al.  ABJM theory as a Fermi gas , 2011, 1110.4066.

[79]  C. Hunter,et al.  Deducing the Properties of Singularities of Functions from their Taylor Series Coefficients , 1980 .

[80]  C. Vafa,et al.  c = 1 string as the topological theory of the conifold , 1995, hep-th/9506122.

[81]  Sanefumi Moriyama,et al.  Instanton bound states in ABJM theory , 2013, 1301.5184.

[82]  Christoph Koutschan,et al.  Advanced applications of the holonomic systems approach , 2010, ACCA.

[83]  C. Vafa,et al.  BPS spectra and 3-manifold invariants , 2017, Journal of Knot Theory and Its Ramifications.

[84]  M. Mariño,et al.  Topological Strings from Quantum Mechanics , 2014, 1410.3382.

[85]  이화영 X , 1960, Chinese Plants Names Index 2000-2009.

[86]  Nobuki Takayama,et al.  An algorithm of constructing the integral of a module--an infinite dimensional analog of Gröbner basis , 1990, ISSAC '90.

[87]  Three-Dimensional Quantum Gravity, Chern-Simons Theory, and the A-Polynomial , 2003, hep-th/0306165.

[88]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[89]  S. Garoufalidis Chern-Simons theory, analytic continuation and arithmetic , 2007, 0711.1716.

[90]  Holomorphic blocks in three dimensions , 2012, 1211.1986.

[91]  G. Darboux,et al.  Mémoire sur l'approximation des fonctions de très-grands nombres, et sur une classe étendue de développements en série. , 1878 .

[92]  J. Edelstein,et al.  Resurgent Transseries and the Holomorphic Anomaly , 2013, 1308.1695.

[93]  Jie Gu,et al.  Non-perturbative approaches to the quantum Seiberg-Witten curve , 2019, Journal of High Energy Physics.

[94]  N. Nekrasov,et al.  Quantization of Integrable Systems and Four Dimensional Gauge Theories , 2009, 0908.4052.